
Discussion 11A @ 2021-11-08 21:03:59-08:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 11A
The following notes are useful for this discussion: Note 16

1. Geometric interpretation of the SVD

In this exercise, we explore the geometric interpretation of matrix transformations and how this connects to
the SVD. We consider how a real 2× 2 matrix acts on the unit circle, transforming it into an ellipse. It turns
out that the principal semiaxes of the resulting ellipse are related to the singular values of the matrix, as well
as the vectors in the SVD.

(a) Consider the real 2× 2 matrix

A =

[
0 −1
3 0

]
. (1)

Also consider the unit circle in R2,

S =


[

cos θ
sin θ

]∣∣∣∣∣∣0 ≤ θ < 2π

 . (2)

Plot the transformed circle, AS, on the R2 plane.
Solution:

AS =


[
− sin θ
3 cos θ

]∣∣∣∣∣∣0 ≤ θ < 2π

 . (3)

The plot should be the ellipse centered at the origin that passes through the points (0, 3), (0,−3), (−1, 0), (1, 0).
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(b) Now let’s consider how this transformation looks in the lens of the SVD. The SVD for matrix A is:

A = UΣV > =

[
0 −1
−1 0

][
3 0
0 1

][
−1 0
0 1

]
, (4)

A~x = UΣV >~x = U

(
Σ
(
V >~x

))
. (5)

Let’s start by examining the effects of each of these matrices one at a time, right to left, in the same
order that they would be applied to a vector ~x.
What does the unit circle look like after being transformed by just V >? Plot S1 = V >S on the
R2 plane. Geometrically speaking, what does V > do to any given ~x?
Solution: V >, being an orthonormal matrix can only rotate or reflect a vector ~x. In particular, it
applies a rotation or reflection such that the vectors ~vi in the standard basis are transformed to the
elementary vectors ~ei in the V basis. Note that this matrix cannot do any scaling.
See jupyter notebook for plots.

(c) What does the unit circle look like after being transformed by ΣV >? Plot S2 = ΣV >S on the R2

plane. Geometrically speaking, what is the Σ matrix doing to any given V >~x?
Solution: The matrix Σ scales vectors that have been transformed into the V basis. In terms of the
SVD, it scales the components of ~x in the direction of ~v1 by σ1, the components in the direction of ~v2
by σ2, and so on for larger matrices. All of the scaling done by the original matrix A is captured by
the Σ matrix.
See jupyter notebook for plots.

(d) What does the unit circle look like after being transformed by UΣV >? Plot S3 = UΣV >S on
the R2 plane. Geometrically speaking, what is the U matrix doing to any given ΣV >~x?
Solution: U is an orthonormal matrix similar to V >, and as such can only apply a rotation or
reflection to a vector. In the context of the SVD, U rotates or reflects the scaled vectors ΣV >~x to their
final locations.
See jupyter notebook for plots.
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(e) Consider the columns of the matrices U, V from the SVD of A in part (b), and treat them as vectors in
R2. Let U = ( ~u1 ~u2), V = (~v1 ~v2). Let σ1, σ2 be the singular values of A, where σ1 ≥ σ2.
In your plot of AS, draw the vectors σ1 ~u1 and σ2 ~u2 from the origin. What do these vectors
correspond to geometrically?
Solution: σ1~u1 = (0,−3) corresponds to the semi-major axis of the ellipse, while σ2~u2 = (−1, 0)
corresponds to the semi-minor axis.
See jupyter notebook for plots.

(f) Repeat parts (b-e) for the following matrices, and note down any interesting things you notice.

i. A 3D matrix, X =

1 2 −1
1 1 0
0 −1 1


ii. A rotation matrix, A1 =

[
1
2 −

√
3
2√

3
2

1
2

]
.

iii. A diagonal matrix, A2 =

[
2 0
0 −1

]
.

iv. A symmetric matrix, A3 =

[
1 2
2 3

]
.

v. A matrix with non-trivial nullspace, A4 =

[
4 2
−2 −1

]
.

vi. An arbitrary matrix, A5 =

[
1.6 2.4
−0.4 −1

]
.

Solution:
See jupyter notebook for plots.

2. PCA on Artificial Data

In this example we’ll create a synthetic dataset and walk through how SVD reveals the “most important”
directions for PCA. As an overview, in this subpart,

• we generate four clusters of data points on a plane

• combine these clusters, and embed the dataset randomly in higher dimensional space

• add quite a lot of noise

• try to use PCA to separate the data into the original clusters.

We’ll use dis11A_pca.ipynb jupyter notebook for this discussion.

(a) Let’s generate the clusters of points around different means µi for i ∈ {1, 2, 3, 4}. Here, generating
a cluster corresponds to sampling from a Gaussian probability distribution, where the probability of
sampling x follows

p (x) =
1√

2πσ2
e−
‖x−µi‖22

2σ2 (6)
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The details of this probability are not important, nor is it even important that you understand what
probability means in this context. All that matters is that this is a way of randomly throwing darts at
these mean vectors in a manner that makes us miss by a little more than we miss by a lot.
Generate points corresponding to the 4 clusters centered at {(−5,−5), (−5, 5), (5,−5), (5, 5)}
with standard deviation σ = 1. Merge into a single dataset D =

[
x1 x2 · · · x4N

]
. Scatter

plot the dataset. The function cluster(mean, stddev, N) generates a dataset of N such
points for 1 cluster.

Solution:

(b) Any vector ~x ∈ Rm, can be embedded onto a higher dimensional space Rn, with n > m using n×m
matrix M such that

~xembed = M~x (7)

Therefore for a datasetD, we haveDembed = MD. Embed the 2D-dataset from (a) into a 3D-space

using M =

1 0
1 −1
1 0


(3×2)

Solution:
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(c) Instead of 3D, we now embed our dataset to a 25D dimensional space, using a random 25 × 2 matrix
M. We can still visualize this embedding in 2D/3D by looking at slices of our dataset. Generate a
25 × 2 random matrix M (of rank 2), embed the dataset D as Dclean = MD and visualize the
dataset in 2D, 3D. Are the cluster boundaries still well defined?
Solution:

(d) We’re now ready to add noise to the dataset. To this effect we sample 4N points Dnoise from a
distribution with mean µ = 0, standard-deviation σ = 5

Dnoisy = Dclean +Dnoise (8)

Plot the noisy dataset similar to (c). Are the cluster boundaries still well defined?
Solution:
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(e) Singular Value Decomposition is a useful tool for recovering the original clustering from the newly
constructed dataset Dnoisy. In particular, we perform SVD and project the noisy dataset over the
columns of U that correspond to the singular values with the highest magnitude. In other words, we
find the projection

UΣV > = SV D(Dnoisy) (9)

P = U [: #components] (10)

DPCA = P>Dnoisy (11)

This algorithm is referred to as Principal Component Analysis, and vectors in P are called the principal
components. Perform SVD on the dataset Dnoisy. Using two principal components, project both
the datasets Dnoisy, Dclean onto the above components. Are the cluster boundaries well defined?
Solution:
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(f) Perform SVD on the dataset Dnoisy. Using three principal components, project both the datasets
Dnoisy, Dclean onto the above components. Are the cluster boundaries well defined?
Solution:

(g) The singular values are ordered such that σ1 ≥ σ2...σn. Instead of components corresponding
to the two largest singular values, use components corresponding to σ3, σ4. Repeat the same for
using σ3, σ4, σ5
Solution:
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(h) Plot all the singular values for the matrix Dnoisy. Do you observe something about the distribu-
tion of the singular values?
Solution:
The singular value corresponding to the first principal component is larger than the rest, which are
similar. The second principal component is also bigger than the rest, but by not as much. We expect
this since our data was originally 2-dimensional.
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