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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 11B
The following notes are useful for this discussion: Note 19.

1. Linear Approximation
A common way to approximate a nonlinear function is to perform linearization near a point. In the case of
a one-dimensional function f(x), the linear approximation of f(x) at a point x⋆ is given by

f(x) ≈ f(x⋆) + f ′(x⋆) · (x− x⋆), (1)

where f ′(x⋆) :=
df
dx (x⋆) is the derivative of f(x) at x = x⋆.

Keep in mind that wherever we see x⋆, this denotes a constant value or operating point.

(a) Suppose we have the single-variable function f(x) = x3 − 3x2. We can plot the function f(x) as
follows:
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i. Write the linear approximation of the function around an arbitrary point x⋆.
Solution:

f(x) ≈ f(x⋆) + f ′(x⋆) · (x− x⋆) (2)

= f(x⋆) + (3x2⋆ − 6x⋆) · (x− x⋆) (3)

ii. Using the expression above, linearize the function around the point x = 1.5. Draw the lin-
earization into the plot of part i).
Solution:

f(x) ≈ f(1.5) +
(
3 · 1.52 − 6 · 1.5

)
· (x− 1.5) (4)
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≈ −3.375 + (−2.25) · (x− 1.5) (5)
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Plot of f(x)
Plot of Linear Approx. to f(x) at x⋆.

Now that we have this specific point’s linearization, we understand how the function behaves
around the point. Let’s use this linearization to evaluate the function’s approximation at x = 1.7
(based on our approximation at x = 1.5, we want to see how a δ = +0.2 shift in the x value
changes the corresponding f(x) value). How does this approximation compare to the exact value
of the function at x = 1.7?

f(1.7) ≈ −3.375 + (−2.25) · (1.7− 1.5) (6)

≈ −3.375− 0.45 (7)

≈ −3.825 (8)

Comparing to the exact value f(1.7) = 1.73 − 3 · 1.72 = −3.757, we find that the difference is
0.068. Not too bad! What if we repeat with δ = 1? To do so, we must use the approximation
around x = 1.5 to compute x = 2.5, and compare to the exact value f(2.5). How does our new
approximation compare to the exact result?

f(2.5) ≈ −3.375 + (−2.25) · (2.5− 1.5) (9)

≈ −3.375− 2.25 (10)

≈ −5.625 (11)

Comparing to the exact value f(2.5) = 2.53 − 3 · 2.52 = −3.125, we find that the difference is
much larger; the error jumped to 2.5! This is an error multiplication of 2.5

0.068 ≈ 37, even though
our δ only multiplied by 5. What happened?
Looking at the actual function, we see that the function has a significant curvature between our
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"anchor point" of x⋆ = 1.5 and x = 2.5. Our linear model is unable to capture this curvature,
and so we estimated f(2.5) as if the function kept decreasing, as it did around x = 1.5 (where the
slope was −2.25).
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Now, we can extend this to higher dimensional functions. In the case of a two-dimensional function
f(x, y), the linear approximation of f(x, y) at a point (x⋆, y⋆) is given by

f(x, y) ≈ f(x⋆, y⋆) +
∂f

∂x
(x⋆, y⋆) · (x− x⋆) +

∂f

∂y
(x⋆, y⋆) · (y − y⋆). (12)

where ∂f
∂x (x⋆, y⋆) is the partial derivative of f(x, y) with respect to x at the point (x⋆, y⋆), and similarly

for ∂f
∂y (x⋆, y⋆)

(b) Now, let’s see how we can find partial derivatives. When we are given a function f(x, y), we calculate
the partial derivative of f with respect to x by fixing y and taking the derivative with respect to x.
Given the function f(x, y) = x2y, find the partial derivatives ∂f(x,y)

∂x and ∂f(x,y)
∂y .

Solution: We have

∂f(x, y)

∂x
= 2xy (13)

∂f(x, y)

∂y
= x2. (14)

(c) Write out the linear approximation of f near (x⋆, y⋆).
Solution: Based on the formula in eq. (12), we can write that:

f(x, y) ≈ f(x⋆, y⋆) + 2x⋆y⋆ · (x− x⋆) + x2⋆ · (y − y⋆). (15)
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(d) We want to see if the approximation arising from linearization of this function is reasonable for a
point close to our point of evaluation. First, approximate f(x, y) at the point (2.01, 3.01) using
(x⋆, y⋆) = (2, 3). Next, compare the result to f(2.01, 3.01).
Solution: Let δ = 0.01. Then, the true value of f(2.01, 3.01) is

f(2.01, 3.01) = (2 + δ)2(3 + δ) = (4 + 4δ + δ2)(3 + δ) = 12 + 16δ + 7δ2 + δ3. (16)

On the other hand, our approximation is

f(2.01, 3.01) ≈ f(2, 3) + 2 · 2 · 3 · δ + 22 · δ = 12 + 16δ. (17)

As we can see, our approximation removes the terms with δ2 and δ3. When δ is sufficiently small,
these terms become very small, and hence our approximation is reasonable.
The actual numerical values are:

f(2, 3) = 12

f(2.01, 3.01) ≈ 12.16 (using linearization)

f(2.01, 3.01) = 12.160701 (exact evaluation off)
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(e) We will now define the notion of a derivative as a function, and take a look at one possible representa-
tion of that function.
Given the representation of the derivative as a row-vector, describe a function that can take this
representation, along with some column vector defining a change in direction, to return a scalar
value (which is the change in the real-valued output). Don’t worry if this seems abstract for now,
the next subpart will clarify.

Solution: We can perform a matrix multiplication between the row vector and column vector to
produce a 1× 1 matrix, which we treat as a scalar. Specifically, 1× k × k × 1 = 1× 1.

(f) Suppose we have now a scalar-valued function f(x⃗, y⃗), which takes in vector-valued arguments x⃗ ∈
Rn, y⃗ ∈ Rk and outputs a scalar ∈ R. That is, f(x⃗, y⃗) is Rn ×Rk → R. For this new model involving
a vector-valued function, how can we adapt our previous linearization method?

One way to linearize the function f is to do it for every single element in x⃗ =
[
x1 x2 . . . xn

]⊤
and y⃗ =

[
y1 y2 . . . yk

]⊤
. Then, when we are looking at xi or yj , we fix everything else as

constant. This would give us the linear approximation

f(x⃗, y⃗) ≈ f(x⃗⋆, y⃗⋆) +
n∑

i=1

∂f(x⃗, y⃗)

∂xi

(
xi − xi,⋆

)
+

k∑
j=1

∂f(x⃗, y⃗)

∂yj

(
yj − yj,⋆

)
. (18)

In order to simplify this equation, we can define the rows Dx⃗ and Dy⃗ as

Dx⃗f =
[

∂f
∂x1

. . . ∂f
∂xn

]
, (19)

Dy⃗f =
[

∂f
∂y1

. . . ∂f
∂yk

]
. (20)

Then, eq. (18) can be rewritten as

f(x⃗, y⃗) ≈ f(x⃗⋆, y⃗⋆) + (Dx⃗f)
∣∣∣
(x⃗⋆,y⃗⋆)

· (x⃗− x⃗⋆) + (Dy⃗f)
∣∣∣
(x⃗⋆,y⃗⋆)

· (y⃗ − y⃗⋆). (21)

Assume that n = k and we define the function f(x⃗, y⃗) = x⃗⊤y⃗ =
∑k

i=1 xiyi. Find Dx⃗f and Dy⃗f .

[Practice] Next, suppose g(x⃗, y⃗) = x1x
2
2y1 + x1y

3
2 + x2x1y2y1 +

x2
1

x3
2y1

. Find Dx⃗g and Dy⃗g

Hint: it can help to look at eq. (12), and match the terms in eq. (18) to that formulation.

Solution: The derivative is a row vector (as denoted above), so if we apply the definition (and write
out the given function explicitly as x1y1 + x2y2 + . . .+ xkyk), we have:

Dx⃗f = y⃗⊤ (22)

and

Dy⃗f = x⃗⊤. (23)

For the second (more difficult) example, we can similarly compute:

∂g(x⃗, y⃗)

∂x1
= x22y1 + y32 + x2y1y2 + 2

x1
x32y1

(24)

∂g(x⃗, y⃗)

∂x2
= 2x1x2y1 + x1y1y2 − 3

x21
x42y1

(25)
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∂g(x⃗, y⃗)

∂y1
= x1x

2
2 + x1x2y2 −

x22
x32y

2
1

(26)

∂g(x⃗, y⃗)

∂y2
= 3x1y

2
2 + x1x2y1 (27)

Compiling these into derivative (row) vectors:

Dx⃗g =
[
x22y1 + y32 + x2y1y2 + 2 x1

x3
2y1

2x1x2y1 + x1y1y2 − 3
x2
1

x4
2y1

]
(28)

Dy⃗g =
[
x1x

2
2 + x1x2y2 −

x2
2

x3
2y

2
1

3x1y
2
2 + x1x2y1

]
(29)
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(g) Following the above part, find the linear approximation of f(x⃗, y⃗) near x⃗⋆ =

[
1
2

]
and y⃗⋆ =

[
−1
2

]
.

Recall that f(x⃗, y⃗) = x⃗⊤y⃗ =
∑k

i=1 xiyi.
Solution: From the solution in the previous part, we can write

f(x⃗, y⃗) ≈ f(x⃗⋆, y⃗⋆) + (Dx⃗f)
∣∣∣
(x⃗⋆,y⃗⋆)

· (x⃗− x⃗⋆) + (Dy⃗f)
∣∣∣
(x⃗⋆,y⃗⋆)

· (y⃗ − y⃗⋆) (30)

= x⃗⊤⋆ y⃗⋆ + y⃗⊤⋆ (x⃗− x⃗⋆) + x⃗⊤⋆ (y⃗ − y⃗⋆). (31)

Putting in x⃗⋆ =

[
1
2

]
and y⃗⋆ =

[
−1
2

]
, and let’s find the approximation of f

[
1 + δ1
2 + δ2

]
,

[
−1 + δ3
2 + δ4

],

we have

f

[
1 + δ1
2 + δ2

]
,

[
−1 + δ3
2 + δ4

] ≈ x⃗⊤⋆ y⃗⋆ + y⃗⊤⋆ (x⃗− x⃗⋆) + x⃗⊤⋆ (y⃗ − y⃗⋆) (32)

= 3 +
[
−1 2

] [δ1
δ2

]
+

[
1 2

] [δ3
δ4

]
(33)

= 3− δ1 + 2δ2 + δ3 + 2δ4. (34)

Let’s compare this with the true value f

[
1 + δ1
2 + δ2

]
,

[
−1 + δ3
2 + δ4

] We have:

f

[
1 + δ1
2 + δ2

]
,

[
−1 + δ3
2 + δ4

] = (1 + δ1)(−1 + δ3) + (2 + δ2)(2 + δ4) (35)

= 3− δ1 + 2δ2 + δ3 + 2δ4 + δ1δ3 + δ2δ4. (36)

As we can see, our approximation removes the second order δ terms δ1δ3 and δ2δ4, which is valid for
small δi.

These linearizations are important for us because we can do many easy computations using linear functions.
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