EECS 16B Designing Information Devices and Systems II Fall 2021 Discussion Worksheet Discussion 11B

The following notes are useful for this discussion: Note 19.

1. Linear Approximation

A common way to approximate a nonlinear function is to perform linearization near a point. In the case of a one-dimensional function f(x), the linear approximation of f(x) at a point x_{\star} is given by

$$f(x) \approx f(x_{\star}) + f'(x_{\star}) \cdot (x - x_{\star}), \tag{1}$$

where $f'(x_{\star}) := \frac{df}{dx}(x_{\star})$ is the derivative of f(x) at $x = x_{\star}$.

Keep in mind that wherever we see x_{\star} , this denotes a *constant value* or operating point.

(a) Suppose we have the single-variable function $f(x) = x^3 - 3x^2$. We can plot the function f(x) as follows:

i. Write the linear approximation of the function around an arbitrary point x_{\star} . Solution:

$$f(x) \approx f(x_{\star}) + f'(x_{\star}) \cdot (x - x_{\star}) \tag{2}$$

$$= f(x_{\star}) + (3x_{\star}^2 - 6x_{\star}) \cdot (x - x_{\star})$$
(3)

ii. Using the expression above, linearize the function around the point x = 1.5. Draw the linearization into the plot of part i). Solution:

$$f(x) \approx f(1.5) + \left(3 \cdot 1.5^2 - 6 \cdot 1.5\right) \cdot (x - 1.5) \tag{4}$$

Discussion 11B, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission.

$$\approx -3.375 + (-2.25) \cdot (x - 1.5) \tag{5}$$

Now that we have this specific point's linearization, we understand how the function behaves around the point. Let's use this linearization to evaluate the function's approximation at x = 1.7(based on our approximation at x = 1.5, we want to see how a $\delta = +0.2$ shift in the x value changes the corresponding f(x) value). How does this approximation compare to the exact value of the function at x = 1.7?

$$f(1.7) \approx -3.375 + (-2.25) \cdot (1.7 - 1.5) \tag{6}$$

$$\approx -3.375 - 0.45$$
 (7)

$$\approx -3.825$$
 (8)

Comparing to the exact value $f(1.7) = 1.7^3 - 3 \cdot 1.7^2 = -3.757$, we find that the difference is 0.068. Not too bad! What if we repeat with $\delta = 1$? To do so, we must use the approximation around x = 1.5 to compute x = 2.5, and compare to the exact value f(2.5). How does our new approximation compare to the exact result?

$$f(2.5) \approx -3.375 + (-2.25) \cdot (2.5 - 1.5) \tag{9}$$

$$\approx -3.375 - 2.25$$
 (10)

$$\approx -5.625$$
 (11)

Comparing to the exact value $f(2.5) = 2.5^3 - 3 \cdot 2.5^2 = -3.125$, we find that the difference is much larger; the error jumped to 2.5! This is an error multiplication of $\frac{2.5}{0.068} \approx 37$, even though our δ only multiplied by 5. What happened?

Looking at the actual function, we see that the function has a significant curvature between our

"anchor point" of $x_{\star} = 1.5$ and x = 2.5. Our linear model is unable to capture this curvature, and so we estimated f(2.5) as if the function kept decreasing, as it did around x = 1.5 (where the slope was -2.25).

Now, we can extend this to higher dimensional functions. In the case of a two-dimensional function f(x, y), the linear approximation of f(x, y) at a point (x_*, y_*) is given by

$$f(x,y) \approx f(x_{\star}, y_{\star}) + \frac{\partial f}{\partial x}(x_{\star}, y_{\star}) \cdot (x - x_{\star}) + \frac{\partial f}{\partial y}(x_{\star}, y_{\star}) \cdot (y - y_{\star}).$$
(12)

where $\frac{\partial f}{\partial x}(x_{\star}, y_{\star})$ is the partial derivative of f(x, y) with respect to x at the point (x_{\star}, y_{\star}) , and similarly for $\frac{\partial f}{\partial y}(x_{\star}, y_{\star})$

(b) Now, let's see how we can find partial derivatives. When we are given a function f(x, y), we calculate the partial derivative of f with respect to x by fixing y and taking the derivative with respect to x. Given the function f(x, y) = x²y, find the partial derivatives \frac{\partial f(x,y)}{\partial x}\$ and \frac{\partial f(x,y)}{\partial y}.
Solution: We have

$$\frac{\partial f(x,y)}{\partial x} = 2xy \tag{13}$$

$$\frac{\partial f(x,y)}{\partial y} = x^2. \tag{14}$$

(c) Write out the linear approximation of f near (x_{\star}, y_{\star}) .

Solution: Based on the formula in eq. (12), we can write that:

$$f(x,y) \approx f(x_{\star}, y_{\star}) + 2x_{\star}y_{\star} \cdot (x - x_{\star}) + x_{\star}^{2} \cdot (y - y_{\star}).$$
(15)

(d) We want to see if the approximation arising from linearization of this function is reasonable for a point close to our point of evaluation. First, approximate f(x, y) at the point (2.01, 3.01) using $(x_*, y_*) = (2, 3)$. Next, compare the result to f(2.01, 3.01).

Solution: Let $\delta = 0.01$. Then, the true value of f(2.01, 3.01) is

$$f(2.01, 3.01) = (2+\delta)^2(3+\delta) = (4+4\delta+\delta^2)(3+\delta) = 12+16\delta+7\delta^2+\delta^3.$$
 (16)

On the other hand, our approximation is

$$f(2.01, 3.01) \approx f(2, 3) + 2 \cdot 2 \cdot 3 \cdot \delta + 2^2 \cdot \delta = 12 + 16\delta.$$
(17)

As we can see, our approximation removes the terms with δ^2 and δ^3 . When δ is sufficiently small, these terms become very small, and hence our approximation is reasonable. The actual numerical values are:

$$f(2,3) = 12$$

 $f(2.01,3.01) \approx 12.16$ (using linearization)
 $f(2.01,3.01) = 12.160701$ (exact evaluation of f)

(e) We will now define the notion of a derivative as a function, and take a look at one possible representation of that function.

Given the representation of the derivative as a row-vector, describe a function that can take this representation, along with some column vector defining a change in direction, to return a scalar value (which is the change in the real-valued output). Don't worry if this seems abstract for now, the next subpart will clarify.

Solution: We can perform a matrix multiplication between the row vector and column vector to produce a 1×1 matrix, which we treat as a scalar. Specifically, $1 \times k \times k \times 1 = 1 \times 1$.

(f) Suppose we have now a scalar-valued function $f(\vec{x}, \vec{y})$, which takes in vector-valued arguments $\vec{x} \in \mathbb{R}^n$, $\vec{y} \in \mathbb{R}^k$ and outputs a scalar $\in \mathbb{R}$. That is, $f(\vec{x}, \vec{y})$ is $\mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R}$. For this new model involving a vector-valued function, how can we adapt our previous linearization method?

One way to linearize the function f is to do it for every single element in $\vec{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^\top$

and $\vec{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_k \end{bmatrix}^{\top}$. Then, when we are looking at x_i or y_j , we fix everything else as constant. This would give us the linear approximation

$$f(\vec{x}, \vec{y}) \approx f(\vec{x}_{\star}, \vec{y}_{\star}) + \sum_{i=1}^{n} \frac{\partial f(\vec{x}, \vec{y})}{\partial x_{i}} (x_{i} - x_{i,\star}) + \sum_{j=1}^{k} \frac{\partial f(\vec{x}, \vec{y})}{\partial y_{j}} (y_{j} - y_{j,\star}).$$
(18)

In order to simplify this equation, we can define the rows $D_{\vec{x}}$ and $D_{\vec{y}}$ as

$$D_{\vec{x}}f = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix},\tag{19}$$

$$D_{\vec{y}}f = \begin{bmatrix} \frac{\partial f}{\partial y_1} & \dots & \frac{\partial f}{\partial y_k} \end{bmatrix}.$$
 (20)

Then, eq. (18) can be rewritten as

$$f(\vec{x}, \vec{y}) \approx f(\vec{x}_{\star}, \vec{y}_{\star}) + (D_{\vec{x}}f)\Big|_{(\vec{x}_{\star}, \vec{y}_{\star})} \cdot (\vec{x} - \vec{x}_{\star}) + (D_{\vec{y}}f)\Big|_{(\vec{x}_{\star}, \vec{y}_{\star})} \cdot (\vec{y} - \vec{y}_{\star}).$$
(21)

Assume that n = k and we define the function $f(\vec{x}, \vec{y}) = \vec{x}^{\top} \vec{y} = \sum_{i=1}^{k} x_i y_i$. Find $D_{\vec{x}} f$ and $D_{\vec{y}} f$. [Practice] Next, suppose $g(\vec{x}, \vec{y}) = x_1 x_2^2 y_1 + x_1 y_2^3 + x_2 x_1 y_2 y_1 + \frac{x_1^2}{x_2^3 y_1}$. Find $D_{\vec{x}} g$ and $D_{\vec{y}} g$ *Hint: it can help to look at eq.* (12), and match the terms in eq. (18) to that formulation. Solution: The derivative is a row vector (as denoted above), so if we apply the definition (and write out the given function explicitly as $x_1 y_1 + x_2 y_2 + \ldots + x_k y_k$), we have:

$$D_{\vec{x}}f = \vec{y}^{\top} \tag{22}$$

and

$$D_{\vec{y}}f = \vec{x}^{\top}.$$
(23)

For the second (more difficult) example, we can similarly compute:

$$\frac{\partial g(\vec{x}, \vec{y})}{\partial x_1} = x_2^2 y_1 + y_2^3 + x_2 y_1 y_2 + 2 \frac{x_1}{x_2^3 y_1}$$
(24)

$$\frac{\partial g(\vec{x}, \vec{y})}{\partial x_2} = 2x_1 x_2 y_1 + x_1 y_1 y_2 - 3 \frac{x_1^2}{x_2^4 y_1}$$
(25)

5

$$\frac{\partial g(\vec{x}, \vec{y})}{\partial y_1} = x_1 x_2^2 + x_1 x_2 y_2 - \frac{x_2^2}{x_2^3 y_1^2}$$
(26)

$$\frac{\partial g(\vec{x}, \vec{y})}{\partial y_2} = 3x_1 y_2^2 + x_1 x_2 y_1 \tag{27}$$

Compiling these into derivative (row) vectors:

$$D_{\vec{x}}g = \left[x_2^2y_1 + y_2^3 + x_2y_1y_2 + 2\frac{x_1}{x_2^3y_1} \quad 2x_1x_2y_1 + x_1y_1y_2 - 3\frac{x_1^2}{x_2^4y_1}\right]$$
(28)

$$D_{\vec{y}}g = \left[x_1x_2^2 + x_1x_2y_2 - \frac{x_2^2}{x_2^3y_1^2} \quad 3x_1y_2^2 + x_1x_2y_1\right]$$
(29)

(g) Following the above part, find the linear approximation of $f(\vec{x}, \vec{y})$ near $\vec{x}_{\star} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{y}_{\star} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.

Recall that $f(\vec{x}, \vec{y}) = \vec{x}^\top \vec{y} = \sum_{i=1}^k x_i y_i$.

Solution: From the solution in the previous part, we can write

$$f(\vec{x}, \vec{y}) \approx f(\vec{x}_{\star}, \vec{y}_{\star}) + (D_{\vec{x}}f)\Big|_{(\vec{x}_{\star}, \vec{y}_{\star})} \cdot (\vec{x} - \vec{x}_{\star}) + (D_{\vec{y}}f)\Big|_{(\vec{x}_{\star}, \vec{y}_{\star})} \cdot (\vec{y} - \vec{y}_{\star})$$
(30)

$$= \vec{x}_{\star}^{\top} \vec{y}_{\star} + \vec{y}_{\star}^{\top} (\vec{x} - \vec{x}_{\star}) + \vec{x}_{\star}^{\top} (\vec{y} - \vec{y}_{\star}).$$
(31)

Putting in $\vec{x}_{\star} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{y}_{\star} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, and let's find the approximation of $f\left(\begin{bmatrix} 1+\delta_1 \\ 2+\delta_2 \end{bmatrix}, \begin{bmatrix} -1+\delta_3 \\ 2+\delta_4 \end{bmatrix} \right)$, we have

$$f\left(\begin{bmatrix}1+\delta_1\\2+\delta_2\end{bmatrix},\begin{bmatrix}-1+\delta_3\\2+\delta_4\end{bmatrix}\right)\approx\vec{x}_{\star}^{\top}\vec{y}_{\star}+\vec{y}_{\star}^{\top}(\vec{x}-\vec{x}_{\star})+\vec{x}_{\star}^{\top}(\vec{y}-\vec{y}_{\star})$$
(32)

$$= 3 + \begin{bmatrix} -1 & 2 \end{bmatrix} \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} \delta_3 \\ \delta_4 \end{bmatrix}$$
(33)

$$= 3 - \delta_1 + 2\delta_2 + \delta_3 + 2\delta_4. \tag{34}$$

Let's compare this with the true value $f\left(\begin{bmatrix}1+\delta_1\\2+\delta_2\end{bmatrix},\begin{bmatrix}-1+\delta_3\\2+\delta_4\end{bmatrix}\right)$ We have:

$$f\left(\begin{bmatrix} 1+\delta_1\\2+\delta_2\end{bmatrix}, \begin{bmatrix} -1+\delta_3\\2+\delta_4\end{bmatrix}\right) = (1+\delta_1)(-1+\delta_3) + (2+\delta_2)(2+\delta_4)$$
(35)

$$= 3 - \delta_1 + 2\delta_2 + \delta_3 + 2\delta_4 + \delta_1\delta_3 + \delta_2\delta_4.$$
 (36)

As we can see, our approximation removes the second order δ terms $\delta_1 \delta_3$ and $\delta_2 \delta_4$, which is valid for small δ_i .

These linearizations are important for us because we can do many easy computations using linear functions.

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.