EECS 16B Designing Information Devices and Systems II
 Fall 2021 Discussion Worksheet Discussion 11B

The following notes are useful for this discussion: Note 19.

1. Linear Approximation

A common way to approximate a nonlinear function is to perform linearization near a point. In the case of a one-dimensional function $f(x)$, the linear approximation of $f(x)$ at a point x_{\star} is given by

$$
\begin{equation*}
f(x) \approx f\left(x_{\star}\right)+f^{\prime}\left(x_{\star}\right) \cdot\left(x-x_{\star}\right) \tag{1}
\end{equation*}
$$

where $f^{\prime}\left(x_{\star}\right):=\frac{\mathrm{d} f}{\mathrm{~d} x}\left(x_{\star}\right)$ is the derivative of $f(x)$ at $x=x_{\star}$.
Keep in mind that wherever we see x_{\star}, this denotes a constant value or operating point.
(a) Suppose we have the single-variable function $f(x)=x^{3}-3 x^{2}$. We can plot the function $f(x)$ as follows:

i. Write the linear approximation of the function around an arbitrary point x_{\star}. Solution:

$$
\begin{align*}
f(x) & \approx f\left(x_{\star}\right)+f^{\prime}\left(x_{\star}\right) \cdot\left(x-x_{\star}\right) \tag{2}\\
& =f\left(x_{\star}\right)+\left(3 x_{\star}^{2}-6 x_{\star}\right) \cdot\left(x-x_{\star}\right) \tag{3}
\end{align*}
$$

ii. Using the expression above, linearize the function around the point $x=1.5$. Draw the linearization into the plot of part i).
Solution:

$$
\begin{equation*}
f(x) \approx f(1.5)+\left(3 \cdot 1.5^{2}-6 \cdot 1.5\right) \cdot(x-1.5) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\approx-3.375+(-2.25) \cdot(x-1.5) \tag{5}
\end{equation*}
$$

Now that we have this specific point's linearization, we understand how the function behaves around the point. Let's use this linearization to evaluate the function's approximation at $x=1.7$ (based on our approximation at $x=1.5$, we want to see how a $\delta=+0.2$ shift in the x value changes the corresponding $f(x)$ value). How does this approximation compare to the exact value of the function at $x=1.7$?

$$
\begin{align*}
f(1.7) & \approx-3.375+(-2.25) \cdot(1.7-1.5) \tag{6}\\
& \approx-3.375-0.45 \tag{7}\\
& \approx-3.825 \tag{8}
\end{align*}
$$

Comparing to the exact value $f(1.7)=1.7^{3}-3 \cdot 1.7^{2}=-3.757$, we find that the difference is 0.068 . Not too bad! What if we repeat with $\delta=1$? To do so, we must use the approximation around $x=1.5$ to compute $x=2.5$, and compare to the exact value $f(2.5)$. How does our new approximation compare to the exact result?

$$
\begin{align*}
f(2.5) & \approx-3.375+(-2.25) \cdot(2.5-1.5) \tag{9}\\
& \approx-3.375-2.25 \tag{10}\\
& \approx-5.625 \tag{11}
\end{align*}
$$

Comparing to the exact value $f(2.5)=2.5^{3}-3 \cdot 2.5^{2}=-3.125$, we find that the difference is much larger; the error jumped to 2.5 ! This is an error multiplication of $\frac{2.5}{0.068} \approx 37$, even though our δ only multiplied by 5 . What happened?
Looking at the actual function, we see that the function has a significant curvature between our
"anchor point" of $x_{\star}=1.5$ and $x=2.5$. Our linear model is unable to capture this curvature, and so we estimated $f(2.5)$ as if the function kept decreasing, as it did around $x=1.5$ (where the slope was -2.25).

Now, we can extend this to higher dimensional functions. In the case of a two-dimensional function $f(x, y)$, the linear approximation of $f(x, y)$ at a point $\left(x_{\star}, y_{\star}\right)$ is given by

$$
\begin{equation*}
f(x, y) \approx f\left(x_{\star}, y_{\star}\right)+\frac{\partial f}{\partial x}\left(x_{\star}, y_{\star}\right) \cdot\left(x-x_{\star}\right)+\frac{\partial f}{\partial y}\left(x_{\star}, y_{\star}\right) \cdot\left(y-y_{\star}\right) . \tag{12}
\end{equation*}
$$

where $\frac{\partial f}{\partial x}\left(x_{\star}, y_{\star}\right)$ is the partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{\star}, y_{\star}\right)$, and similarly for $\frac{\partial f}{\partial y}\left(x_{\star}, y_{\star}\right)$
(b) Now, let's see how we can find partial derivatives. When we are given a function $f(x, y)$, we calculate the partial derivative of f with respect to x by fixing y and taking the derivative with respect to x. Given the function $f(x, y)=x^{2} y$, find the partial derivatives $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$.
Solution: We have

$$
\begin{align*}
& \frac{\partial f(x, y)}{\partial x}=2 x y \tag{13}\\
& \frac{\partial f(x, y)}{\partial y}=x^{2} \tag{14}
\end{align*}
$$

(c) Write out the linear approximation of f near $\left(x_{\star}, y_{\star}\right)$.

Solution: Based on the formula in eq. (12), we can write that:

$$
\begin{equation*}
f(x, y) \approx f\left(x_{\star}, y_{\star}\right)+2 x_{\star} y_{\star} \cdot\left(x-x_{\star}\right)+x_{\star}^{2} \cdot\left(y-y_{\star}\right) . \tag{15}
\end{equation*}
$$

(d) We want to see if the approximation arising from linearization of this function is reasonable for a point close to our point of evaluation. First, approximate $f(x, y)$ at the point $(2.01,3.01)$ using $\left(x_{\star}, y_{\star}\right)=(2,3)$. Next, compare the result to $f(2.01,3.01)$.
Solution: Let $\delta=0.01$. Then, the true value of $f(2.01,3.01)$ is

$$
\begin{equation*}
f(2.01,3.01)=(2+\delta)^{2}(3+\delta)=\left(4+4 \delta+\delta^{2}\right)(3+\delta)=12+16 \delta+7 \delta^{2}+\delta^{3} \tag{16}
\end{equation*}
$$

On the other hand, our approximation is

$$
\begin{equation*}
f(2.01,3.01) \approx f(2,3)+2 \cdot 2 \cdot 3 \cdot \delta+2^{2} \cdot \delta=12+16 \delta \tag{17}
\end{equation*}
$$

As we can see, our approximation removes the terms with δ^{2} and δ^{3}. When δ is sufficiently small, these terms become very small, and hence our approximation is reasonable.
The actual numerical values are:

$$
\begin{aligned}
f(2,3) & =12 & & \\
f(2.01,3.01) & \approx 12.16 & & \text { (using linearization) } \\
f(2.01,3.01) & =12.160701 & & \text { (exact evaluation of } f)
\end{aligned}
$$

(e) We will now define the notion of a derivative as a function, and take a look at one possible representation of that function.
Given the representation of the derivative as a row-vector, describe a function that can take this representation, along with some column vector defining a change in direction, to return a scalar value (which is the change in the real-valued output). Don't worry if this seems abstract for now, the next subpart will clarify.
Solution: We can perform a matrix multiplication between the row vector and column vector to produce a 1×1 matrix, which we treat as a scalar. Specifically, $1 \times k \times k \times 1=1 \times 1$.
(f) Suppose we have now a scalar-valued function $f(\vec{x}, \vec{y})$, which takes in vector-valued arguments $\vec{x} \in$ $\mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{k}$ and outputs a scalar $\in \mathbb{R}$. That is, $f(\vec{x}, \vec{y})$ is $\mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$. For this new model involving a vector-valued function, how can we adapt our previous linearization method?
One way to linearize the function f is to do it for every single element in $\vec{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{\top}$ and $\vec{y}=\left[\begin{array}{llll}y_{1} & y_{2} & \ldots & y_{k}\end{array}\right]^{\top}$. Then, when we are looking at x_{i} or y_{j}, we fix everything else as constant. This would give us the linear approximation

$$
\begin{equation*}
f(\vec{x}, \vec{y}) \approx f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\sum_{i=1}^{n} \frac{\partial f(\vec{x}, \vec{y})}{\partial x_{i}}\left(x_{i}-x_{i, \star}\right)+\sum_{j=1}^{k} \frac{\partial f(\vec{x}, \vec{y})}{\partial y_{j}}\left(y_{j}-y_{j, \star}\right) . \tag{18}
\end{equation*}
$$

In order to simplify this equation, we can define the rows $D_{\vec{x}}$ and $D_{\vec{y}}$ as

$$
\begin{align*}
D_{\vec{x}} f & =\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right], \tag{19}\\
D_{\vec{y}} f & =\left[\begin{array}{lll}
\frac{\partial f}{\partial y_{1}} & \cdots & \frac{\partial f}{\partial y_{k}}
\end{array}\right] . \tag{20}
\end{align*}
$$

Then, eq. (18) can be rewritten as

$$
\begin{equation*}
f(\vec{x}, \vec{y}) \approx f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\left.\left(D_{\vec{x}} f\right)\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+\left.\left(D_{\vec{y}} f\right)\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)} \cdot\left(\vec{y}-\vec{y}_{\star}\right) . \tag{21}
\end{equation*}
$$

Assume that $n=k$ and we define the function $f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{k} x_{i} y_{i}$. Find $D_{\vec{x}} f$ and $D_{\vec{y}} f$. [Practice] Next, suppose $g(\vec{x}, \vec{y})=x_{1} x_{2}^{2} y_{1}+x_{1} y_{2}^{3}+x_{2} x_{1} y_{2} y_{1}+\frac{x_{1}^{2}}{x_{2}^{3} y_{1}}$. Find $D_{\vec{x}} g$ and $D_{\vec{y}} g$
Hint: it can help to look at eq. (12), and match the terms in eq. (18) to that formulation.
Solution: The derivative is a row vector (as denoted above), so if we apply the definition (and write out the given function explicitly as $x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{k} y_{k}$), we have:

$$
\begin{equation*}
D_{\vec{x}} f=\vec{y}^{\top} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\vec{y}} f=\vec{x}^{\top} . \tag{23}
\end{equation*}
$$

For the second (more difficult) example, we can similarly compute:

$$
\begin{align*}
& \frac{\partial g(\vec{x}, \vec{y})}{\partial x_{1}}=x_{2}^{2} y_{1}+y_{2}^{3}+x_{2} y_{1} y_{2}+2 \frac{x_{1}}{x_{2}^{3} y_{1}} \tag{24}\\
& \frac{\partial g(\vec{x}, \vec{y})}{\partial x_{2}}=2 x_{1} x_{2} y_{1}+x_{1} y_{1} y_{2}-3 \frac{x_{1}^{2}}{x_{2}^{4} y_{1}} \tag{25}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial g(\vec{x}, \vec{y})}{\partial y_{1}}=x_{1} x_{2}^{2}+x_{1} x_{2} y_{2}-\frac{x_{2}^{2}}{x_{2}^{3} y_{1}^{2}} \tag{26}\\
& \frac{\partial g(\vec{x}, \vec{y})}{\partial y_{2}}=3 x_{1} y_{2}^{2}+x_{1} x_{2} y_{1} \tag{27}
\end{align*}
$$

Compiling these into derivative (row) vectors:

$$
\begin{align*}
D_{\vec{x}} g & =\left[\begin{array}{ll}
x_{2}^{2} y_{1}+y_{2}^{3}+x_{2} y_{1} y_{2}+2 \frac{x_{1}}{x_{2}^{3} y_{1}} & 2 x_{1} x_{2} y_{1}+x_{1} y_{1} y_{2}-3 \frac{x_{1}^{2}}{x_{2}^{4} y_{1}}
\end{array}\right] \tag{28}\\
D_{\vec{y}} g & =\left[\begin{array}{ll}
x_{1} x_{2}^{2}+x_{1} x_{2} y_{2}-\frac{x_{2}^{2}}{x_{2}^{3} y_{1}^{2}} & 3 x_{1} y_{2}^{2}+x_{1} x_{2} y_{1}
\end{array}\right] \tag{29}
\end{align*}
$$

(g) Following the above part, find the linear approximation of $f(\vec{x}, \vec{y})$ near $\vec{x}_{\star}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{y}_{\star}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.

Recall that $f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{k} x_{i} y_{i}$.
Solution: From the solution in the previous part, we can write

$$
\begin{align*}
f(\vec{x}, \vec{y}) & \approx f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\left.\left(D_{\vec{x}} f\right)\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+\left.\left(D_{\vec{y}} f\right)\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)} \cdot\left(\vec{y}-\vec{y}_{\star}\right) \tag{30}\\
& =\vec{x}_{\star}^{\top} \vec{y}_{\star}+\vec{y}_{\star}^{\top}\left(\vec{x}-\vec{x}_{\star}\right)+\vec{x}_{\star}^{\top}\left(\vec{y}-\vec{y}_{\star}\right) . \tag{31}
\end{align*}
$$

Putting in $\vec{x}_{\star}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{y}_{\star}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, and let's find the approximation of $f\left(\left[\begin{array}{c}1+\delta_{1} \\ 2+\delta_{2}\end{array}\right],\left[\begin{array}{c}-1+\delta_{3} \\ 2+\delta_{4}\end{array}\right]\right)$, we have

$$
\begin{align*}
f\left(\left[\begin{array}{c}
1+\delta_{1} \\
2+\delta_{2}
\end{array}\right],\left[\begin{array}{c}
-1+\delta_{3} \\
2+\delta_{4}
\end{array}\right]\right) & \approx \vec{x}_{\star}^{\top} \vec{y}_{\star}+\vec{y}_{\star}^{\top}\left(\vec{x}-\vec{x}_{\star}\right)+\vec{x}_{\star}^{\top}\left(\vec{y}-\vec{y}_{\star}\right) \tag{32}\\
& =3+\left[\begin{array}{ll}
-1 & 2
\end{array}\right]\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right]+\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
\delta_{3} \\
\delta_{4}
\end{array}\right] \tag{33}\\
& =3-\delta_{1}+2 \delta_{2}+\delta_{3}+2 \delta_{4} . \tag{34}
\end{align*}
$$

Let's compare this with the true value $f\left(\left[\begin{array}{c}1+\delta_{1} \\ 2+\delta_{2}\end{array}\right],\left[\begin{array}{c}-1+\delta_{3} \\ 2+\delta_{4}\end{array}\right]\right)$ We have:

$$
\begin{align*}
f\left(\left[\begin{array}{c}
1+\delta_{1} \\
2+\delta_{2}
\end{array}\right],\left[\begin{array}{c}
-1+\delta_{3} \\
2+\delta_{4}
\end{array}\right]\right) & =\left(1+\delta_{1}\right)\left(-1+\delta_{3}\right)+\left(2+\delta_{2}\right)\left(2+\delta_{4}\right) \tag{35}\\
& =3-\delta_{1}+2 \delta_{2}+\delta_{3}+2 \delta_{4}+\delta_{1} \delta_{3}+\delta_{2} \delta_{4} \tag{36}
\end{align*}
$$

As we can see, our approximation removes the second order δ terms $\delta_{1} \delta_{3}$ and $\delta_{2} \delta_{4}$, which is valid for small δ_{i}.

These linearizations are important for us because we can do many easy computations using linear functions.

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.

