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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 12A
The following notes are useful for this discussion: Note 19

1. Jacobians and Linear Approximation

Recall that for a scalar-valued function f(x⃗, y⃗) : Rn × Rk → R with vector-valued arguments, we can
linearize the function at (x⃗⋆, y⃗⋆)

f(x⃗, y⃗) ≈ f(x⃗⋆, y⃗⋆) + (Dx⃗f)
∣∣∣
(x⃗⋆,y⃗⋆)

· (x⃗− x⃗⋆) + (Dy⃗f)
∣∣∣
(x⃗⋆,y⃗⋆)

· (y⃗ − y⃗⋆). (1)

where

Dx⃗f =
[

∂f
∂x1

. . . ∂f
∂xn

]
, (2)

Dy⃗f =
[

∂f
∂y1

. . . ∂f
∂yk

]
. (3)

(a) When the function f⃗(x⃗, y⃗) : Rn × Rk → Rm takes in vectors and outputs a vector (rather than a
scalar), we can view each dimension in f⃗ independently as a separate function fi, and linearize each
of them:

f⃗(x⃗, y⃗) =


f1(x⃗, y⃗)
f2(x⃗, y⃗)

...
fm(x⃗, y⃗)

 ≈


f1(x⃗⋆, y⃗⋆) +Dx⃗f1 · (x⃗− x⃗⋆) +Dy⃗f1 · (y⃗ − y⃗⋆)
f2(x⃗⋆, y⃗⋆) +Dx⃗f2 · (x⃗− x⃗⋆) +Dy⃗f2 · (y⃗ − y⃗⋆)

...
fm(x⃗⋆, y⃗⋆) +Dx⃗fm · (x⃗− x⃗⋆) +Dy⃗fm · (y⃗ − y⃗⋆)

 (4)

We can rewrite this in a clean way with the Jacobian:

Dx⃗f⃗ =


Dx⃗f1
Dx⃗f2
...

Dx⃗fm

 =


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 , (5)

and similarly

Dy⃗f⃗ =


∂f1
∂y1

. . . ∂f1
∂yk

...
. . .

...
∂fm
∂y1

. . . ∂fm
∂yk

 . (6)

Then, the linearization becomes

f⃗(x⃗, y⃗) ≈ f⃗(x⃗⋆, y⃗⋆) + (Dx⃗f⃗)
∣∣∣
(x⃗⋆,y⃗⋆)

· (x⃗− x⃗⋆) + (Dy⃗f⃗)
∣∣∣
(x⃗⋆,y⃗⋆)

· (y⃗ − y⃗⋆). (7)
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Let x⃗ =

[
x1
x2

]
and f⃗(x⃗) =

[
x21x2
x1x

2
2

]
. Find Dx⃗f⃗ , applying the definition above.

Solution: Here, we have

Dx⃗f⃗ =

[
2x1x2 x21
x22 2x1x2

]
. (8)

(b) Evaluate the approximation of f⃗ using x⃗⋆ =

[
2
3

]
at the point

[
2.01
3.01

]
, and compare with f⃗

[
2.01
3.01

].

Recall the definition that f⃗(x⃗) =

[
x21x2
x1x

2
2

]
.

Solution: Let δ = 0.01. The true value is

f⃗

[
2.01
3.01

] =

[
(2 + δ)2(3 + δ)
(2 + δ)(3 + δ)2

]
=

[
12 + 16δ + 7δ2 + δ3

18 + 21δ + 8δ2 + δ3

]
. (9)

On the other hand, our approximation is

f⃗

[
2.01
3.01

] ≈ f⃗

[
2
3

]+

[
12 4
9 12

]
·

[
δ
δ

]
=

[
12 + 16δ
18 + 21δ

]
. (10)

Again, our approximation essentially removes the higher order terms of δ.
When we plug in δ = 0.01, we have

f⃗

[
2.01
3.01

] =

[
12.160701
18.210801

]
(11)

and our approximation is

f⃗

[
2.01
3.01

] =

[
12.16
18.21

]
. (12)

(c) Let x⃗ and y⃗ be vectors with 2 rows, and let w⃗ be another vector with 2 rows. Let f⃗(x⃗, y⃗) = x⃗y⃗⊤w⃗.
Find Dx⃗f⃗ and Dy⃗f⃗ .
Solution: Here, recall that

f⃗ =

[
x1
x2

]
·
[
y1 y2

]
·

[
w1

w2

]
=

[
x1y1 x1y2
x2y1 x2y2

]
·

[
w1

w2

]
=

[
x1y1w1 + x1y2w2

x2y1w1 + x2y2w2

]
. (13)

Then,

Dx⃗f⃗ =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
y1w1 + y2w2 0

0 y1w1 + y2w2

]
(14)
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and

Dy⃗f⃗ =

[
∂f1
∂y1

∂f1
∂y2

∂f2
∂y1

∂f2
∂y2

]
=

[
x1w1 x1w2

x2w1 x2w2

]
. (15)

We can also write

Dx⃗f⃗ = y⃗⊤w⃗ · I (16)

and

Dy⃗f⃗ = x⃗w⃗⊤, (17)

which can be derived by noticing that y⃗⊤w⃗ = w⃗⊤y⃗.

(d) Continuing the above part, find the linear approximation of f⃗ near x⃗ = y⃗ =

[
1
1

]
and with w⃗ =

[
2
1

]
.

Solution: We have

f⃗(x⃗, y⃗) ≈ f⃗(x⃗⋆, y⃗⋆) +Dx⃗f⃗ · (x⃗− x⃗⋆) +Dy⃗f⃗ · (y⃗ − y⃗⋆) (18)

=

[
3
3

]
+

[
3 0
0 3

]
·

[
x1 − 1
x2 − 1

]
+

[
2 1
2 1

]
·

[
y1 − 1
y2 − 1

]
(19)

(20)

Let’s do an approximation of f⃗

[
1 + δ1
1 + δ2

]
,

[
1 + δ3
1 + δ4

], then,

f⃗

[
1 + δ1
1 + δ2

]
,

[
1 + δ3
1 + δ4

] ≈

[
3
3

]
+

[
3 0
0 3

]
·

[
δ1
δ2

]
+

[
2 1
2 1

]
·

[
δ3
δ4

]
=

[
3 + 3δ1 + 2δ3 + δ4
3 + 3δ2 + 2δ3 + δ4

]
.

We can compare with the true value

f⃗

[
1 + δ1
1 + δ2

]
,

[
1 + δ3
1 + δ4

] =

[
1 + δ1
1 + δ2

] [
1 + δ3 1 + δ4

] [2
1

]

=

[
1 + δ1
1 + δ2

]
(3 + 2δ3 + δ4)

=

[
3 + 3δ1 + 2δ3 + δ4 + 2δ1δ3 + δ1δ4
3 + 3δ2 + 2δ3 + δ4 + 2δ2δ3 + δ2δ4

]
,

(21)

and we see that our approximation removes the second order δ terms δ1δ3, δ1δ4, δ2δ3 and δ2δ4.

2. Linearizing a Two-state System
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We have a two-state nonlinear system defined by the following differential equation:

d

dt

[
β(t)
γ(t)

]
=

d

dt
x⃗(t) =

[
−2β(t) + γ(t)
g(γ(t)) + u(t)

]
= f⃗(x⃗(t), u(t)) (22)

where x⃗(t) =

[
β(t)
γ(t)

]
and g(·) is a nonlinear function with the following graph:

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

γ

g
(γ
)

The g(·) is the only nonlinearity in this system. We want to linearize this entire system around a operating
point/equilibrium. Any point x⋆ is an operating point if d

dt x⃗(t) = 0⃗.

(a) If we have fixed u⋆(t) = −1, what values of γ and β will ensure d
dt x⃗(t) = 0⃗?

Solution: To find the equilibrium point, we’ll start by finding the values for which g(γ) + u⋆ =
g(γ) − 1 = 0. In other words, we need to find values of γ such that g(γ) = 1. Although we don’t
have an equation for g(γ), we can still find these points graphically, by using our graph. If we add a
horizonal line at g(γ) = 1, we get the following:

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

γ

g
(γ
)
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Having done this, it looks like we’ll have f2(x⃗, u⋆) = g(γ)−u⋆ = 0 for γ = −2, γ = −1, and γ = 1.
Now we just need to find an β that sets f1(x⃗, u⋆) = −2β + γ = 0 for each of these. Setting β = 1

2 · γ
will do this.
With that, we have our three equilibrium points, namely

x⃗⋆1 =

[
−1
−2

]
x⃗⋆2 =

[
−1

2
−1

]
x⃗⋆3 =

[
1
2
1

]
. (23)

(b) Now that you have the three operating points, linearize the system about the operating point (x⃗⋆3, u⋆)
that has the largest value for γ. Specifically, what we want is as follows. Let δ⃗xi(t) = x⃗(t)− x⃗⋆i for
i = 1, 2, 3, and δu(t) = u(t)− u⋆. We can in principle write the linearized system for each operating
point in the following form:

(linearization about (x⃗⋆i , u⋆))
d

dt
δ⃗xi(t) = Aiδ⃗xi(t) +Biδu(t) + w⃗i(t) (24)

where w⃗i(t) is a disturbance that also includes the approximation error due to linearization.
For this part, find Ai and Bi.
We have provided below the function g(γ) and its derivative ∂g

∂γ .

−3 −2 −1 0 1 2 3
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−1
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3
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)
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Solution: To linearize the system, we need to compute the two Jacobians

Dx⃗ =

[
∂f1
∂β

∂f1
∂γ

∂f2
∂β

∂f2
∂γ

]
(25)

Du =

[
∂f1
∂u
∂f2
∂u ,

]
(26)

and evaluate them at the operating points that we found in the previous part. The Jacobian matrices
evaluated at the operating points will be the Ai and Bi matrices.
If we work out the partial derivatives, we get

∂f1
∂β

=
∂

∂β
(−2β + γ) = −2 (27)

∂f1
∂γ

=
∂

∂γ
(−2β + γ) = 1 (28)

∂f2
∂β

=
∂

∂β
(g(γ) + u) = 0 (29)

∂f2
∂γ

=
∂

∂γ
(g(γ) + u) =

∂g

∂γ
(30)

∂f1
∂u

=
∂

∂u
(−2β + γ) = 0 (31)

∂f2
∂u

=
∂

∂u
(g(γ) + u) = 1, (32)

(33)

which gives

Dx⃗ =

[
−2 1

0 ∂g
∂γ

]
(34)
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Du =

[
0
1

]
. (35)

It turns out that the only part of Dx⃗ and Du that depends on the operating point is ∂g/∂γ, and we can
read these off of the given graph. The relevant values are

∂g

∂γ

∣∣∣∣
γ=−2

= 1.5 (36)

∂g

∂γ

∣∣∣∣
γ=−1

= −1 (37)

∂g

∂γ

∣∣∣∣
γ=2

= 3, (38)

which correspond to x⃗⋆1,x⃗⋆2, and x⃗⋆3, respectively. Finally, this gives

A1 =

[
−2 1
0 1.5

]
, B1 =

[
0
1

]
(39)

A2 =

[
−2 1
0 −1

]
, B2 =

[
0
1

]
(40)

A3 =

[
−2 1
0 3

]
, B3 =

[
0
1

]
. (41)

(42)

(c) Which of the operating points are stable? Which are unstable?
Solution: To assess the stability or instability of each operating point, we need to find the eigenvalues
of each linearization. Since A1, A2, and A3 are all upper triangular, their eigenvalues are just the two
entries along their diagonals. So, the linearization will be stable if both diagonal entries are negative
(remember, these are continuous-time systems), and unstable if they aren’t both negative. This means
that:

• x⃗⋆1 is unstable, since the eigenvalues of A1 are −2 and 1.5;
• x⃗⋆2 is stable, since the eigenvalues of A2 are −2 and −1;
• x⃗⋆3 is unstable, since the eigenvalues of A3 are −2 and 3.
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