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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 12B
The following notes are useful for this discussion:

1. Quadratic Approximation and Vector Differentiation

As shown in the previous discussion, a common way to approximate a non-linear high-dimensional functions
is to perform linearization near a point. In the case of a two-dimensional function f(x, y) with scalar output,
the linear approximation of f(x, y) at a point (x⋆, y⋆) is given by

f(x, y) ≈ f(x⋆, y⋆) + fx(x⋆, y⋆)(x− x⋆) + fy(x⋆, y⋆)(y − y⋆) (1)

where as in the previous section,

fx(x⋆, y⋆) =
∂f(x, y)

∂x

∣∣∣∣
(x⋆,y⋆)

and fy(x⋆, y⋆) =
∂f(x, y)

∂y

∣∣∣∣
(x⋆,y⋆)

. (2)

In vector form, this can be written as:

f(x⃗) ≈ f(x⃗⋆) +
[
Dx⃗f |x⃗⋆

]
(x⃗− x⃗⋆). (3)

Recall from the previous discussion that Dx⃗f is a row-vector filled with the partial derivatives ∂f(x⃗)
∂xi

:

Dx⃗f =
[
∂f(x⃗)
∂x1

· · · ∂f(x⃗)
∂xn

]
=
[
fx1(x⃗) · · · fxn(x⃗)

]
. (4)

Our goal is to extend this idea to a quadratic approximation. To do this, we need some notion of a second
derivative. For this discussion, we will only be considering these types of functions from Rn → R, since
that is the typical form for a cost function used during optimization.

(a) Given the function f(x) = e−2x, find the first and second derivatives, and write out its quadratic
approximation at x = x⋆. Hint: Use Taylor’s theorem.

Solution:

f ′(x) = −2e−2x (5)

f ′′(x) = 4e−2x. (6)

As shown in the previous discussion, a linear approximation of f(x) around x⋆ is:

f(x) ≈ f(x⋆) + f ′(x⋆) · (x− x⋆) (7)

≈ e−2x⋆ − 2e−2x⋆(x− x⋆) (8)

To create a quadratic approximation, we can add the following term to the equation:

f(x) ≈ f(x⋆) + f ′(x⋆) · (x− x⋆) +
1

2
f ′′(x⋆) · (x− x⋆)

2 (9)
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≈ e−2x⋆ − 2e−2x⋆(x− x⋆) + 2e−2x⋆(x− x⋆)
2. (10)

How did we get this? Recall that the Taylor expansion around point x⋆ of scalar function f is:

f(x) =
∞∑
k=0

f (k)(x⋆) ·
(x− x⋆)

k

k!
(11)

= f(x⋆) + f ′(x⋆) · (x− x⋆) +
1

2
f ′′(x⋆) · (x− x⋆)

2 + · · · (12)

Linearization takes the first two terms, which give a linear function; quadratic approximation just takes
the extra quadratic term, giving a quadratic function.

(b) To write second partial derivatives compactly, we will introduce a new notation that builds off the
notation fx and fy introduced previously. To compute fxy, we first take the derivative in x, then in y:

fxy(x⋆, y⋆) =
∂fx(x, y)

∂y

∣∣∣∣
(x⋆,y⋆)

=
∂2f(x, y)

∂y∂x

∣∣∣∣∣
(x⋆,y⋆)

. (13)

Given the function f(x, y) = x2y2, find all of the first and second partial derivatives.
Solution: We have

fx(x, y) =
∂f(x, y)

∂x
= 2xy2 (14)

fy(x, y) =
∂f(x, y)

∂y
= 2x2y (15)

for the first partial derivatives. To find the second derivatives, we need to take partials with respect to
x and y for each of the above first partial derivatives, giving us 4 different equations.

fxx(x, y) =
∂fx(x, y)

∂x
=

∂

∂x

[
2xy2

]
= 2y2 (16)

fxy(x, y) =
∂fx(x, y)

∂y
=

∂

∂y

[
2xy2

]
= 4xy (17)

fyx(x, y) =
∂fy(x, y)

∂x
=

∂

∂x

[
2x2y

]
= 4xy (18)

fyy(x, y) =
∂fy(x, y)

∂y
=

∂

∂y

[
2x2y

]
= 2x2. (19)

(c) To find the quadratic approximation of f(x, y) near (x⋆, y⋆), we plug in f(x⋆ + ∆x, y⋆ + ∆y) and
drop the terms that are higher order than quadratic:

f(x⋆ +∆x, y⋆ +∆y) = (x⋆ +∆x)2(y⋆ +∆y)2 (20)

= (x2⋆ + 2x⋆∆x+ (∆x)2)(y2⋆ + 2y⋆∆y + (∆y)2) (21)

≈ x2⋆y
2
⋆ + 2x⋆y

2
⋆∆x+ 2x2⋆y⋆∆y (22)

+ y2⋆(∆x)2 + 4x⋆y⋆(∆x)(∆y) + x2⋆(∆y)2 (23)

= f(x⋆, y⋆) + fx(x⋆, y⋆)∆x+ fy(x⋆, y⋆)∆y (24)

+
1

2
fxx(x⋆, y⋆)(∆x)2 +

1

2
fyy(x⋆, y⋆)(∆y)2 (25)
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+ fxy(x⋆, y⋆)(∆x)(∆y). (26)

This is slightly different from the expression we get via the Taylor series expansion. How would we
rewrite this expression, so that all second derivatives are involved, each with a coefficient of 1

2?
Solution: We note that

fxy(x, y) = fyx(x, y) (27)

so we can write
fxy(x, y) =

1

2
fxy(x, y) +

1

2
fyx(x, y) (28)

and plug this into the previous set of equations to get

f(x+∆x, y +∆y) = f(x⋆, y⋆) + fx(x⋆, y⋆)∆x+ fy(x⋆, y⋆)∆y (29)

+
1

2
fxx(x⋆, y⋆)(∆x)2 +

1

2
fyy(x⋆, y⋆)(∆y)2 (30)

+
1

2
fyx(x⋆, y⋆)(∆y)(∆x) +

1

2
fxy(x⋆, y⋆)(∆x)(∆y). (31)

As expected from the scalar case, there is a component of the second partial derivative along the x
direction, multiplied by (∆x)2, and similarly for the y direction. There are also two different cross
terms, both multiplied by (∆x)(∆y).

(d) Just as we created the derivative row vector to hold all the first partial derivatives to help in writing
linearization in matrix/vector form:

Dx⃗f =
[
∂f(x⃗)
∂x1

· · · ∂f(x⃗)
∂xn

]
=
[
fx1(x⃗) · · · fxn(x⃗)

]
(32)

we would like to create a matrix to hold all the second partial derivatives to help in writing quadratic
approximation in matrix/vector form:

Hx⃗f =


∂2f(x⃗)
∂x2

1
· · · ∂2f(x⃗)

∂x1∂xn

...
. . .

...
∂2f(x⃗)
∂xn∂x1

· · · ∂2f(x⃗)
∂x2

n

 =


fx1x1(x⃗) · · · fxnx1(x⃗)

...
. . .

...
fx1xn(x⃗) · · · fxnxn(x⃗)

 (33)

This matrix is the Hessian of f . Note that this quantity is different from the Jacobian matrix that was
covered in the previous discussion. In contrast to the Hessian, which is the matrix of second partial
derivatives of a scalar-valued vector-input function f : Rn → R, the Jacobian is the matrix of first
partial derivatives of a vector-valued vector-input function f⃗ : Rn → Rk.
In fact, the Hessian is the (Jacobian) derivative of the derivative; if we let g⃗(x⃗) = (Dx⃗f)

⊤ (so that it’s
a column vector and the dimensions work out), then Hx⃗f = Dx⃗g⃗. To get a feel for the Hessian of f ,
find H(x,y)f for the f above, that is, f(x, y) = x2y2.
Solution: We know f is a function in two variables, so

H(x,y)f =

[
fxx(x, y) fyx(x, y)
fxy(x, y) fyy(x, y)

]
(34)

=

[
2y2 4xy
4xy 2x2

]
. (35)
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(e) Using the Hessian, write out the general formula for the quadratic approximation of a scalar-
valued function f of a vector x⃗ in vector/matrix form.
Solution: Before, in our linearization, we saw that the only way to get a scalar from the first derivative
Dx⃗f |x⃗⋆

and the increment ∆x⃗ is to multiply them:

f(x⃗⋆ +∆x⃗) ≈ f(x⃗⋆) +
[
Dx⃗f |x⃗⋆

]
(∆x⃗). (36)

Now we are tasked to make a scalar from the second derivative Hx⃗f |x⃗⋆
and ∆x⃗. Remember that a

scalar can be obtained by a row vector times a column vector, and that a matrix times a column vector
is a column vector. So the following gives us a column vector:[

Hx⃗f |x⃗⋆

]
(∆x⃗) (37)

and the following gives us a scalar:

(∆x⃗)⊤
[
Hx⃗f |x⃗⋆

]
(∆x⃗). (38)

Finally, remember that the Taylor series gives us a factor of 1
2 on the second derivative, so the full

quadratic approximation is

f(x⃗⋆ +∆x⃗) ≈ f(x⃗⋆) +
[
Dx⃗f |x⃗⋆

]
(∆x⃗) +

1

2
(∆x⃗)⊤

[
Hx⃗f |x⃗⋆

]
(∆x⃗). (39)

If we would like to verify this calculation, note that the solution to the previous problem generalizes to
the following quadratic approximation:

f(x⃗⋆ +∆x⃗) ≈ f(x⃗⋆) +
n∑

i=1

fxi(x⃗⋆)∆xi +
1

2

n∑
i=1

n∑
j=1

fxixj (x⃗⋆)(∆xi)(∆xj). (40)

So we should expect to get the same thing by expanding our matrix-vector form. Notice that

[
Dx⃗f |x⃗⋆

]
(∆x⃗) =

n∑
i=1

[
Dx⃗f |x⃗⋆

]
i
[∆x⃗]i =

n∑
i=1

fxi(x⃗⋆)∆xi (41)

and

(∆x⃗)⊤
[
Hx⃗f |x⃗⋆

]
(∆x⃗) =

n∑
i=1

n∑
j=1

[
Hx⃗f |x⃗⋆

]
ij
[∆x⃗]i [∆x⃗]j =

n∑
i=1

n∑
j=1

fxixj (x⃗⋆)(∆xi)(∆xj). (42)

So we get the exact same thing in both ways, and our vector/matrix formulation works.

(f) [Practice]: Show that the quadratic approximation for the scalar-valued function f(w⃗) = ex⃗
⊤w⃗

around w⃗ = w⃗⋆ is

f(w⃗⋆ +∆w⃗) ≈ ex⃗
⊤w⃗⋆

(
1 + x⃗⊤(∆w⃗) +

1

2

(
x⃗⊤(∆w⃗)

)2)
. (43)

assuming that x⃗ is just some constant, given vector.
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Hint: You can compute the following partial derivatives:

fwi(w⃗) = xif(w⃗) (44)

fwiwj (w⃗) = xixjf(w⃗). (45)

Now compute Dw⃗f and Hw⃗f , and plug it into the quadratic approximation formula.
Solution: To begin with, here’s how we compute the first and second partial derivatives.

fwi(w⃗) =
∂

∂wi
ex⃗

⊤w⃗ (46)

=
∂

∂wi
e
∑n

i=1 xiwi (47)

= xie
∑n

i=1 xiwi (48)

= xie
x⃗⊤w⃗ (49)

= xif(w⃗). (50)

fwiwj (w⃗) =
∂fwi(w⃗)

∂wj
(51)

=
∂

∂wj
(xif(w⃗)) (52)

= xi

(
∂

∂wj
f(w⃗)

)
(53)

= xixjf(w⃗) (54)

Now we would like to compute Dw⃗f and Hw⃗f .

Dw⃗f =
[
fw1(w⃗) · · · fwn(w⃗)

]
(55)

=
[
x1f(w⃗) · · · xnf(w⃗)

]
(56)

= f(w⃗)
[
x1 · · · xn

]
(57)

= f(w⃗)x⃗⊤ (58)

Hw⃗f =


fw1w1(w⃗) · · · fw1wn(w⃗)

...
. . .

...
fwnw1(w⃗) · · · fwnwn(w⃗)

 (59)

=


x21f(w⃗) · · · x1xnf(w⃗)

...
. . .

...
xnx1f(w⃗) · · · x2nf(w⃗)

 (60)

= f(w⃗)


x21 · · · x1xn
...

. . .
...

xnx1 · · · x2n

 (61)

= f(w⃗)x⃗x⃗⊤. (62)
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Using these expressions, the quadratic approximation of f at w⃗ is

f(w⃗⋆ +∆w⃗) ≈ f(w⃗⋆) +
[
Dw⃗f |w⃗⋆

]
(∆w⃗) +

1

2
(∆w⃗)⊤

[
Hw⃗f |w⃗⋆

]
(∆w⃗) (63)

= f(w⃗⋆) + f(w⃗⋆)x⃗
⊤(∆w⃗) +

1

2
(∆w⃗)⊤

(
f(w⃗⋆)x⃗x⃗

⊤
)
(∆w⃗) (64)

= f(w⃗⋆)

(
1 + x⃗⊤(∆w⃗) +

1

2
(∆w⃗)⊤x⃗x⃗⊤(∆w⃗)

)
(65)

= ex⃗
⊤w⃗⋆

(
1 + x⃗⊤(∆w⃗) +

1

2

(
(∆w⃗)⊤x⃗

)(
x⃗⊤(∆w⃗)

))
(66)

= ex⃗
⊤w⃗⋆

(
1 + x⃗⊤(∆w⃗) +

1

2

(
x⃗⊤(∆w⃗)

)⊤(
x⃗⊤(∆w⃗)

))
(67)

= ex⃗
⊤w⃗⋆

(
1 + x⃗⊤(∆w⃗) +

1

2

(
x⃗⊤(∆w⃗)

)2)
. (68)

(g) Using the result in the previous subpart, use linearity to give the quadratic approximation for the
function

∑m
i=1 e

x⃗⊤
i w⃗ around w⃗ = w⃗⋆. Here, assume that the x⃗i are just some given vectors.

Solution: By linearity, we can take the quadratic approximations from each of the components and
add them together to form the approximation for the above summation:

f(w⃗⋆ +∆w⃗) ≈
m∑
i=1

ex⃗
⊤
i w⃗⋆

(
1 + x⃗⊤i (∆w⃗) +

1

2

(
x⃗⊤i (∆w⃗)

)2)
(69)

(h) [Practice]: The second derivative also has an interpretation as the derivative of the derivative. How-
ever, we saw that the derivative of a scalar-valued function with respect to a vector is naturally a row.
If you wanted to approximate how much the derivative changed by moving a small amount ∆w⃗,
how would you get such an estimate using your expression for the second derivative?
Solution: We can view this problem as if we were trying to get a linear approximation of the first
derivative using the second derivative. From the previous problems with linearization, we would like
to take the derivative of the first derivative row vector, evaluate it at w⃗ = w⃗⋆ and have it act upon the
incremental vector ∆w⃗ to get the resulting change in the first derivative. In the scalar case, this looks
like

f ′(w⋆ +∆w) = f ′(w⋆) + f ′′(w⋆)∆w (70)

But in the vector case, since the first derivative is a row vector, we need to produce a row vector from
the second derivative term.
There is no way to get a matrix that multiplies a column vector and returns a row vector. Matrix
multiplication just doesn’t work that way based on the definitions that we have made so far from 16A.
We have a choice — we can define a new kind of operator that does this, or we can figure out a way to
shoehorn this into standard matrix multiplication. We choose the latter. To get a row out of a matrix
using the increment ∆w⃗ we just compute (∆w⃗)⊤

[
Hw⃗f |w⃗⋆

]
. Notice that in this row times a matrix,

the resulting i-th element in the row indeed has the change in the i-th coordinate from all j possible
partial second derivatives: [

(∆w⃗)⊤
[
Hw⃗f |w⃗⋆

]]
i

=

n∑
j=1

[
Hw⃗f |w⃗⋆

]
ji
∆wj (71)
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=
n∑

j=1

fwjwi(w⃗)∆wj (72)

=
[
Dw⃗(fwi)

∣∣
w⃗⋆

]
(∆w⃗) (73)

So
Dw⃗f |w⃗⋆+∆w⃗ ≈ Dw⃗f |w⃗⋆

+ (∆w⃗)⊤
[
Hw⃗f |w⃗⋆

]
. (74)
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