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EECS 16B Designing Information Devices and Systems II
Fall 2021 Discussion Worksheet Discussion 13A

1. Linearization to help classification: Discussion Version

This discussion is designed to help you get started on a closely related homework problem.

Consider trying to classify a set of measurements ~xi with given labels `i. We consider the binary case of two
possible labels: “+” and “-” and fold our threshold implicitly into the weights by augmenting the constant
“1” in the first position of each ~xi. We want to learn a vector of weights ~w so that we can deem any point
with ~x>i ~w > 0 as being a member of the “+” category and anything with ~x>i ~w < 0 as being a member
of the “-” category.

We will do this using a minimization in the spirit of least squares. Except, instead of necessarily using some
sort of squared loss function, we will just consider a generic cost function that can depend on the label and
the prediction score for the point. For the i-th data point in our training data, we will incur a cost c(~x>i ~w, `i)
for a total cost that we want to minimize by picking the best ~w:

argmin
~w

ctotal(~w) =
m∑
i=1

c(~x>i ~w, `i) (1)

Because this can be a nonlinear nonquadratic function, our goal is to solve this iteratively as a sequence of
least-squares problems that we know how to solve.

Consider the following algorithm:
1: ~w = ~0 . Initialize the weights to ~0
2: while Not done do . Iterate towards solution
3: Compute ~w>~xi . Generate current estimated labels
4: Compute d

d~wc(~w
>~xi, `i) . Generate derivatives with respect to ~w of the cost for update step

5: Compute d2

d~w2 c(~w
>~xi, `i) . Generate second derivatives of the cost for update step

6: δ ~w = LeastSquares(·, ·) . We will derive what to call least squares on
7: ~w = ~w + δ ~w . Update parameters
8: end while
9: Return ~w

The key step above is figuring out with what arguments to call LeastSquares while only having the
labels `i and the points ~xi.

Recall that when the function ~f(~x, ~y) : Rn × Rk → Rm takes in vectors and outputs a vector, the relevant
derivatives for linearization are also represented by matrices:

∂ ~f

∂~x
=


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂y[1] · · ·

∂fm
∂y[k]

 .
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where we will use python style indexing to avoid confusion with iteration counts and so

~x =


x[1]
...
xn

 ~y =


y1
...
yk

 . (2)

Then, the linearization (first-order expansion) becomes

~f(~x, ~y) ≈ ~f(~x0, ~y0) +
∂ ~f

∂~x
(~x0, ~y0) · (~x− ~x0) +

∂ ~f

∂~y
(~x0, ~y0) · (~y − ~y0) . (3)

(a) Now, suppose we wanted to approximate the cost for each data point

ci(~w) = c(~x>i ~w, `i) (4)

where

~w =


w1

...
wn

 (5)

in the neighborhood of a weight vector ~w?. Our goal is to write out the first-order expression for
approximating the cost function ci(~w? + δ ~w). This should be something in vector/matrix form like
you have seen for the approximation of nonlinear systems by linear systems. We don’t want to take
any second derivatives just yet — only first derivatives. We have outlined a skeleton for the derivation
with some parts missing. Follow the guidelines in each sub-section.

(i) Comparing to eq. (3), we know that ci(~w? + δ ~w) ≈ ci(~w?)+
∂ci
∂ ~w (~w?) · δ ~w. Write out the vector

form of ∂ci
∂ ~w ( ~w?).

Solution:
∂ci
∂ ~w

( ~w?) =
[

∂ci
∂w1

( ~w?) · · · ∂ci
∂wn

( ~w?)
]

(6)

(ii) Write out the partial derivative of ci(~w) with respect to wg, the gth component of ~w, i.e., find
∂ci(~w)
∂wg

.
You should leave the answer in terms of the expression c′(p, `) = d

dpc(p, `). This “prime” notation
can be useful since by itself c is a scalar valued function of two scalar arguments and so this c′ is
also a scalar valued function of two scalar arguments.
(HINT: Use the linearity of derivatives and sums to compute the partial derivatives with respect
to each of the wg terms. Don’t forget the chain rule and the fact that ~x>i ~w =

∑n
j=1 xijwj =

xigwg +
∑

j 6=g xijwj .)
Solution:
Using the hint, we calculate the partial derivative with respect to each wg term.
Using the chain rule,

∂ci(~w)

∂wg
=

∂

∂wg
c(~x>i ~w, `i) (7)
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=

(
∂

∂(~x> ~w)
c(~x>i ~w, `i)

)(
∂

∂wg

(
~x>i ~w

))
(8)

= c′(~x>i ~w, `i) ·

 ∂

∂wg

xigwg +

n∑
j=1
j 6=g

xijwj


 (9)

= c′(~x>i ~w, `i)xig (10)

(11)

(iii) With what you had above, can you fill in the missing part to express the row vector ∂
∂ ~wci(~w)?

What should c′(·, ·) be?

∂

∂ ~w
ci(~w) = c′(~x>i ~w, `i) (12)

Solution: We know that
∂ci(~w)

∂wg
=

(
∂ci(~w)

∂ ~w

)
g

. (13)

Since the gth component is just the derivative c′ multiplied by xig,

∂

∂ ~w
ci(~w) = c′(~x>i ~w, `i)~x

>
i . (14)

Note that this is a row vector, in order to keep the dimensions consistent.

(b) Now, we want a better approximation that includes second derivatives. For a general function, we
would look for

f(~x0 + δ~x) ≈ f(~x0) +
∂f

∂~x
(~x0)δ~x+

1

2
δ~x>

(
∂2f

∂~x2
(~x0)

)
δ~x (15)

where ∂f
∂~x (~x0) is an appropriate row vector and, as you’ve seen in the note, ∂2f

∂~x2 (~x0) is called the
Hessian and represents the second derivatives.

(i) Comparing to eq. (15), we know that

ci(~w? + δ ~w) ≈ ci(~w?) +
∂ci
∂ ~w

( ~w?) · δ ~w +
1

2
δ ~w>

(
∂2ci
∂ ~w2

( ~w?)

)
δ ~w (16)

Write out the matrix form of ∂2ci
∂ ~w2 ( ~w?) in terms of the second partial derivatives ∂2ci

∂wg∂wh
(~w?).

Solution:

∂2ci
∂ ~w2

( ~w?) =


∂2ci
∂w2

1
(~w?) · · · ∂2ci

∂w1∂wn
(~w?)

...
. . .

...
∂2ci

∂wn∂w1
(~w?) · · · ∂2ci

∂w2
n
(~w?)

 (17)

(ii) Take the second derivatives of the cost ci(~w), i.e. solve for ∂2ci(~w)
∂wg∂wh

.

You should leave the answer in terms of c′′(p, `) = d2

dp2
c(p, `). This c′′ is also a familiar scalar

second derivative with respect to the scalar first argument of the cost function.
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(HINT: You should use the answer to part (a) and just take another derivative. Once again, use
the linearity of derivatives and sums to compute the partial derivatives with respect to each of
the wh terms. This will give you ∂2

∂wg∂wh
. Don’t forget the chain rule and again use the fact that

~x>i ~w =
∑n

j=1 xijwj = xihwh +
∑

j 6=h xijwj .)

Solution: Proceeding in a similar manner as above, let us find ∂2ci(~w)
∂wg∂wh

.

∂2ci(~w)

∂wg∂wh
=

∂

∂wh

(
∂

∂wg
ci(~w)

)
(18)

=
∂

∂wh

(
c′(~x>i ~w, `i) · xig

)
(19)

=

(
∂

∂(~x>i ~w)

(
c′(~x>i ~w, `i) · xig

))( ∂

∂wh

(
~x>i ~w

))
(20)

=
(
c′′(~x>i ~w, `i)xig

)
· xih (21)

= c′′(~x>i ~w, `i)xigxih. (22)

(iii) The expression in part (ii) is for the (g, h)th component of the second derivative. 1
2 times this

times δwg times δwh would give us that component’s contribution to the second-derivative term
in the approximation, and we have to sum this up over all g and h to get the total contribution
of the second-derivative term in the approximation. Now, we want to group terms to restructure
this into matrix-vector form by utilizing the outer-product form of matrix multiplication. What
should the space in the following expression be filled with?

∂2

∂ ~w2
ci(~w) = c′′(~x>i ~w, `i) (23)

What should c′′(·, ·) be?
Solution: Noticing that

∂2ci(~w)

∂wg∂wh
=

(
∂ci(~w)

∂ ~w

)
gh

, (24)

Since the (g, h)th component is just the second derivative c′′ multiplied by xigxih,

∂2

∂ ~w2
ci(~w) = c′′(~x>i ~w, `i)~xi~x

>
i . (25)

Note that this is a matrix.

Solution:
H~wci(~w) = c′′(~x>i ~w, `i)~xi~x

>
i

(c) Now we have successfully expressed the second order approximation of ci(~w? + δ ~w). Since we even-
tually want to minimize the total cost ctotal(~w) =

∑m
i=1 ci(~w), can you write out the second order

approximation of ctotal(~w? + δ ~w) using results from (a) and (b)?
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Solution: From previous parts, we get

ci(~w? + δ ~w) ≈ ci(~w?) +
∂ci
∂ ~w

( ~w?)δ ~w +
1

2
δ ~w>

(
∂2ci
∂ ~w2

(~w?)

)
δ ~w (26)

= ci(~w?) + c′(~x>i ~w?, `i)~x
>
i δ ~w +

1

2
δ ~w>c′′(~x>i ~w?, `i)~xi~x

>
i δ ~w. (27)

Based on the linearity of derivatives, to get the second order approximation of ctotal(~w?+ δ ~w), we just
sum up the second order approximation for each ci(~w? + δ ~w):

ctotal(~w? + δ ~w) =

m∑
i=1

ci(~w? + δ ~w) (28)

≈
m∑
i=1

[
ci(~w?) + c′(~x>i ~w?, `i)~x

>
i δ ~w +

1

2
δ ~w>c′′(~x>i ~w?, `i)~xi~x

>
i δ ~w

]
(29)

(d) In this part we explore solving this problem using “Newton’s method,” which will feel superficially
different from the iterative least squares formulation above which is pursued in the homework. Recall
that for a differentiable scalar-valued function f(~w), we can set ∂f

∂ ~w ( ~w?) = ~0> to find a candidate ex-
tremum (in analogy with what you know about finding maxima and minima in single variable calculus
— here there are many different variables and we want the function to be locally maximum/minimum
with respect to each of them). This is a system of nonlinear equations of the type solved by Newton’s
method via local linearization. Consider a linearization of the derivative of our cost function, ∂f

∂ ~w

>
at

the point ~w. Use a linearization for ∂f
∂ ~w (~w)

> and the fact that ∂f
∂ ~w ( ~w?) = ~0> to derive an update

using Newton’s method.
(This is like the Inverse Kinematics problem you did on the last homework.)

Solution: From linearization of the derivative ∂f
∂ ~w

>
at point ~w and evaluated at ~w? we have

∂f

∂ ~w
(~w?)

> =
∂f

∂ ~w
(~w)> +

(
∂2f

∂ ~w2
(~w?)

)
(~w? − ~w) (30)

At optimal point ~w? we know that the derivative should be ~0>, which gives us the equation

~0 =
∂f

∂ ~w
(~w)> +

(
∂2f

∂ ~w2
(~w?)

)
(~w? − ~w) (31)

~w? − ~w = −

(
∂2f

∂ ~w2
(~w?)

)−1
∂f

∂ ~w
(~w)> (32)

∴ ~w? = ~w −

(
∂2f

∂ ~w2
(~w?)

)−1
∂f

∂ ~w
(~w)> (33)

This is a "Newton-style" approximation to solve for the updates. It turns out that this is identical to
doing iterated least squares.

2. Using Automatic Differentiation using pytorch
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In this part we introduce basic ideas of auto-differentiation with PyTorch.

(a) The choice of the loss function effects the decision boundary that we recover. Let’s consider different
examples of cost functions

• squared error: c+sq(p) = (p− 1)2, c−sq(p) = (p+ 1)2;
• exponential: c+exp(p) = e−p, c−exp(p) = ep;

• and logistic: c+logistic(p) = ln
(
1 + e−p

)
, c−logistic(p) = ln(1 + ep).

Plot the different cost functions.

Solution:
(b) In the previous question, we derived a second order linearization of the total cost function

ci(~w? + δ ~w) ≈ ci(~w?) +
∂ci
∂ ~w

( ~w?)δ ~w +
1

2
δ ~w>

(
∂2ci
∂ ~w2

(~w?)

)
δ ~w (34)

The above expression requires us to compute the derivative and hessian of c(~w). Consider the follow-
ing optimzation problem

min
~w
‖~w‖22

where w ∈ R2. This is akin to finding a ~w which minimizes the cost function c(~w) = ‖~w‖22. To solve
this problem, we consider two approaches

• with derivative : ~wt+1 = ~wt − ∂c
∂ ~w ( ~w?)

>

• with hessian : ~wt+1 = ~wt −
{

∂2c
∂ ~w2 (~w?)

}−1
∂ci
∂ ~w ( ~w?)

Let’s visualize the loss surface, the weights during multiple iterations of update.
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Solution:
(c) Let’s revisit the classification problem. Consider the following dataset, where points have two labels,

red and blue. We want to recover a decision boundary ~w, such that for ~w>~x ≥ 0 for red points,
~w>~x < 0 for blue points. Visualize the datasets and true decision boundary.

Solution:
(d) Compare the training loss for different cost functions across multiple iterations.
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Solution:
(e) In this problem we learn ~w ∈ R3. Visualize the value of the cost function at different points in the

space of weights, and track the weights across multiple iterations.

Solution:
(f) Compare the following decision boundaries as you change the number of iterations
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• logistic cost with gradient update
• logistic cost with Hessian update

• exponential cost with Hessian update
• true classifier boundary

Solution:
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