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EECS 16B Designing Information Devices and Systems II
Fall 2021 UC Berkeley Homework 8
This homework is due on Friday, October 22, 2021, at 11:59PM. Self-grades
and HW Resubmission are due on Tuesday, October 26, 2021, at 11:59PM.

1. Reading Lecture Notes

Staying up to date with lectures is an important part of the learning process in this course. Here are links to
the notes that you need to read for the homework this week: Note 12. Note 13 on the website is optional
and for those who enjoyed OMP in 16A. Note 14 is for Thu lecture.

(a) Consider A ∈ Rn×n where the columns of A (denoted by ~ak, 1 ≤ k ≤ n) are orthonormal. What
does the least squares solution (A>A)−1A>~y simplify to?

(b) Suppose we have two vectors ~v1 =

[
1
1

]
and ~v2 =

[
1
2

]
∈ R2. Then, we use Gram-Schmidt Orthonor-

malization to construct ~q1 and ~q2. Are ~q1 and ~q2 the only vectors that form an orthogonal basis for
Span(~v1, ~v2)?
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2. Gram-Schmidt Basic

(a) Use Gram-Schmidt to find a matrix U whose columns form an orthonormal basis for the column
space of V .

V =


1 1 1
0 1 1
0 1 1
0 0 1
0 0 1

 (1)

(b) Show that you get the same resulting vector when you project ~w =


1
−1
0
−1
0

 onto the columns of V as

you do when you project onto the columns of U , i.e. show that

V (V >V )−1V > ~w = U(U>U)−1U> ~w. (2)

Feel free to use numpy. No need to grind this out by hand.
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3. Stability for information processing: solving least-squares via gradient descent with a constant step
size

Although ideas of control were originally developed to understand how to control physical and electronic
systems, they can be used to understand purely informational systems as well. Most of modern machine
learning is built on top of fundamental ideas from control theory. This is a problem designed to give you
some of this flavor.

In this problem, we will derive a dynamical system approach for solving a least-squares problem which finds
the ~x that minimizes‖A~x− ~y‖2. We consider A to be tall and full rank — i.e. it has linearly independent
columns.

As covered in EECS16A, this has a closed-form solution:

~̂x = (A>A)−1A>~y. (3)

Direct computation requires the “inversion” of A>A, which has a complexity of O(N3) where (A>A) ∈
RN×N . This may be okay for small problems with a few parameters, but can easily become unfeasible if
there are lots of parameters that we want to fit. Instead, we will solve the problem iteratively using some-
thing called “gradient descent” which turns out to fit perfectly into our perspective of state-space dynamic
equations. Again, this problem is just trying to give you a flavor for this and connect to stability, “gradient
descent” itself is not yet in scope for 16B (just wait a few more weeks).

(a) Let ~x[i] be the estimate of ~x at time step i. We can define the least-squares error ~ε[i] to be:

~ε[i] = ~y −A~x[i] (4)

Show that if ~x[i] = ~̂x, then ~ε[i] is orthogonal to the columns of A, i.e. show A>~ε[i] = ~0.
This was shown to you in 16A, but it is important that you see this for yourself again.

(b) We would like to develop a “fictional” state space equation for which the state ~x[i] will converge to
~x[i] → ~̂x, the true least squares solution. The evolution of these states reflects what is happening
computationally.
Here A~x[i] represents our current reconstruction of the output ~y. The difference (~y−A~x[i]) represents
the current residual.
We define the following update:

~x[i+ 1] = ~x[i] + αA>(~y −A~x[i]) (5)

that gives us an updated estimate from the previous one. Here α is the step-size (called the “learning
rate” in machine-learning circles) that we get to choose. For us in 16B, it doesn’t matter where this
iteration comes from. But if you want, this can be interpreted as a tentative sloppy projection. If
A had orthonormal columns, then A>(~y − A~x[i]) would take us exactly to where we need to be. It
would update the parameters perfectly. But A doesn’t have orthonormal columns, so we just move our
estimate a little bit in that direction where α controls how much we move. You can see that if we ever
reach ~x[i] = ~̂x, the system reaches equilibrium or steady state — it stops moving. At that point, the
residual is perfectly orthogonal to the columns of A. In a way, this is a dynamical system that was
chosen based on where its equilibrium point is.
Notice also that taking one step of this iteration only requires O(N`) operations if the height of ~y is
` and there are N different parameters in ~x that we are trying to fit. Basically, the complexity of one
iteration is the size of the A matrix since every element participates exactly once in eq. (5).
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By the way, it is no coincidence that the gradient of‖A~x− ~y‖2 with respect to ~x is

∇‖A~x− ~y‖2 = 2A>(A~x− ~y) (6)

This can be derived directly by using vector derivatives (outside of 16B’s class scope) or by carefully
using partial derivatives as we will do for linearization, later in 16B. So, the heuristic update (5) is
actually just taking a step along the negative gradient direction. This insight is what lets us adapt this
heuristic for a kind of “linearization” applied to other optimization problems that aren’t least-squares.
(But all this is out-of-scope for 16B at this particular point in the course, and is something discussed
further in 127 and 189. Here, at this point in 16B, (5) is just some discrete-time linear system that we
have been given.)
To show that ~x[i] → ~̂x, we define a new state variable ∆~x[i] = ~x[i] − ~̂x. This parameter should be
reminiscent of the variation ~v(t) you saw in the homework problem last week on trajectory tracking.
In both cases, it represents the deviation from where we want to be.
Derive the discrete-time state evolution equation for ∆~x[i], and show that it takes the form:

∆~x[i+ 1] = (I − αG)∆~x[i]. (7)

(c) We would like to make the system such that ∆~x[i] converges to 0. As a first step, we just want to
make sure that we have a stable system. To do this, we need to understand the eigenvalues of I − αG.
Show that the eigenvalues of matrix I − αG are 1− αλj{G}, where λj{G} (j = 1, 2, ...N) are the
eigenvalues of G.

(d) To be stable, we need all these eigenvalues to have magnitudes that are smaller than 1 (since this is a
discrete-time system). Note that since the matrix G above has a special form, all of the eigenvalues of
G are non-negative and real. (You’ll see why next week in lecture.) For what step-size/learning-rate
α would the eigenvalue 1 − αλmax{G} = 0 where λmax{G} is the largest eigenvalue of G. At this
α, what would be the largest magnitude eigenvalue of I − αG? Is the system stable?
(Hint: Think about the smallest eigenvalue of G. What happens to it? Feel free to assume that this
smallest eigenvalue λmin{G} is strictly greater than 0. )

(e) Above what value of α would the system (7) become unstable? This is what happens if you try to
set the α to be too high.

(f) Looking back at the part before last (where you moved the largest eigenvalue of G to zero), if you
slightly increased the α, would the convergence become faster or slower?
(HINT: think about the dominant eigenvalue here. Which is the eigenvalue of I − αG with the largest
magnitude?)

(g) What is the α that would result in the system being stable, and converge fastest to ∆~x = 0?
This is spiritually the machine-learning counterpart to the idea of critically damped systems, even
though the math is different. The key to understanding this is that if you have something that is
governed by many different eigenvalues that all have |λi| < 1, it is the largest magnitude one that
determines how fast we converge. So what this problem is asking you to do is to minimize the largest
eigenvalue of (I − αG). If the currently largest magnitude eigenvalue of (I − αG) is negative, then
making α slightly smaller would make that eigenvalue smaller in magnitude. If the currently largest
magnitude eigenvalue of (I−αG) is positive, then making α slightly larger would make that eigenvalue
smaller in magnitude. If the largest positive eigenvalue of (I −αG) wants to pull the α bigger and the
largest negative eigenvalue of (I − αG) wants to pull the α smaller, what do you think that suggests
has to happen to minimize the largest magnitude eigenvalue of (I − αG)?
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(HINT: When would growing α stop helping shrink the biggest magnitude eigenvalue of I − αG?)

(h) Play with the given Jupyter notebook and comment on what you observe. Consider how the
different step sizes relate to recurrence relations, and how a sufficiently small step size can approach a
continuous solution.
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4. Motor Driver and System Identification

In the lab project, you will be designing SIXT33N, a mischievous little robot who might just do what you
want — if you design it correctly. In phases 1 and 2, you will build the legs of SIXT33N: you will be
designing SIXT33N’s wheels and developing a linear model for the car system. The wheels will be driven
by two 9-Volt DC motors whose driver control circuit is shown in Figure 1 .

M

RB

Microcontroller
output pin

VA

B E

C

Motor

NPN BJT

Figure 1: Motor Controller Circuit

There is some minimum voltage required to deliver enough power to the motors to overcome the static
friction and start them, but after that point, we treat the motor speed as approximately linear with the
applied voltage VA (this will be the basis of the system model you will develop in this problem).

As it is difficult to use a microcontroller (MSP430 in hands-on lab; Arduino in lab sim) to generate a true
adjustable DC signal, we will instead make use of its PWM function. A PWM, or pulse-width modulated,
signal is a square wave with a variable duty cycle (the proportion of a cycle period for which the power
source is turned on, or logic HIGH). PWM is used to digitally change the average voltage delivered to a load
by varying the duty cycle. If the frequency is large enough, the on-off switching is imperceptible, but the
average voltage delivered to the load changes proportionally with the duty cycle. Hence, changing the duty
cycle corresponds to changing the DC voltage supplied to the motor. An example can be seen in figure 2.

t[ms]

VA[V]

0 1 2 3 4 5 6 7 8 9 10

5 VA,HIGH = 5V

Tperiod = 2ms

Ton = 1.4ms
D = Ton

Tperiod
= 0.7(70%)

Figure 2: PWM Example with switching frequency 500Hz and 70% duty cycle

The PWM pin (VA) is connected via a resistor (RB) to the "Base (B)" of an NPN bipolar junction transistor
(BJT). This transistor, in reality, behaves a bit differently from the NMOS with which you are familiar, but
for this class, you may assume that it is functionally the same as an NMOS, behaving as a switch. On the
BJT, the three terminals are analogous to those of an NMOS: the "Base (B)" is the gate, the "Collector (C)"
is the drain, and the "Emitter (E)" is the source.
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The BJT in Figure 1 is switching between ON and OFF modes when VA is HIGH and LOW respectively.
The model for both ON and OFF states are shown in Figure 3. When the BJT turns on, VBE can be
modeled as a fixed voltage source with voltage value VBE0. In ON mode, there is a Current Controlled
Current Source modeled between "Collector (C)" and "Emitter (E)", i.e., current at the "Collector (C)" is
an amplified version of current at the "Base (B)" (notice that positive IB has to flow into the "Base (B)" for
the relation IC = βF IB to hold). βF is called the Common-Emitter Current Gain.

The diode in parallel with the motor is needed because of the inductive characteristics of the motor. If the
motor is on and VA switches to LOW, the inductive behavior of the motor maintains the current and the
diode provides the path to dissipate it as the BJT is turned off. When the BJT turns on, the diode is off so
there is no current flow through the diode.

B
IB > 0

−
+VBE0 βF IB

IC = βF IB
C

E

(a) Model of BJT in ON mode (when VA is logic HIGH)

B
IB = 0 IC = 0

C

E

(b) Model of BJT in OFF mode (when VA is logic LOW)

Figure 3: Model of NPN BJT in Different Modes

Please use VBE0 = 0.8 V, βF = 100, VA,HIGH = 5 V and VA,LOW = 0 V for all following calculations.

Part 1: Circuit analysis to construct the system model

(a) Draw the equivalent motor controller circuit when the BJT is ON by substituting in the BJT
model from Fig. 3a into Fig. 1. Express IB and IC for VA = VA,HIGH as a function of RB .

(b) Draw the equivalent motor controller circuit when the BJT is OFF by substituting in the BJT
model from Fig. 3b into Fig. 1. Express IB and IC for VA = VA,LOW as a function of RB .

(c) Derive the average collector current, IAVG, over one period, Tperiod, of the PWM signal, VA, as a
function of RB and the duty cycle, D, of the PWM signal. Hint: The time average of some signal
f(t) from time t0 to t1 is given as fAVG = 1

t1−t0

∫ t1
t0
f(τ) dτ . Figure 2 may be useful.

(d) In the previous part, explain briefly why is it sufficient to take the average over only one period
if we are actually interested in the average collector current over multiple periods?

(e) If RB = 2 kΩ, what is the average collector current, IAVG, that drives the motor when the duty
cycle of the PWM signal is equal to 25%?

Part 2: Learning a Car Model from data

To control the car, we need to build a model of the car first. Instead of designing a complex nonlinear model,
we will approximate the system with a linear model to work for small perturbations around an equilibrium
point. The following model applies separately to each wheel (and associated motor) of the car:

vL[i] = θLuL[i]− βL (8)
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vR[i] = θRuR[i]− βR (9)

Notice that this particular model has no state variables since we are measuring velocity directly here.

To do system ID, we decide to use the exact same input uL[i] = uR[i] = u[i] for both motors. We measure
both velocities however.

Meet the variables at play in this model: (Note: the β here have nothing to do with the previous part.)

• i - The current timestep of the model. Since we model the car as a discrete-time system, nwill advance
by 1 on every new sample in the system.

• vL[i] - The discrete-time velocity (in units of ticks/timestep) of the left wheel, reading from the motor.

• vR[i] - The discrete-time velocity (in units of ticks/timestep) of the right wheel, reading from the motor.

• u[i] - The input to each wheel. The duty cycle of the PWM signal (VA), which is the percentage of
the square wave’s period for which the square wave is HIGH, is mapped to the range [0, 255]. Thus,
u[i] takes a value in [0, 255] representing the duty cycle. For example, when u[i] = 255, the duty
cycle is 100 %, and the motor controller just delivers a constant signal at the system’s HIGH voltage,
delivering the maximum possible power to the motor. When u[i] = 0, the duty cycle is 0 %, and the
motor controller delivers 0 V. The duty cycle (D) can be written as

duty cycle (D) =
u[i]

255
(10)

• θ(θL, θR) - Relates change in input to change in velocity. Its units are ticks/(timestep · duty cycle).
Since our model is linear, we assume that θ is the same for every unit increase in u[i] . This is empiri-
cally measured using the car. You will have a separate θ for your left and your right wheel(θL, θR).

• β(βL, βR) - Similarly to θ, β is dependent upon many physical phenomena, so we will empirically
determine it using the car. β represents a constant offset in the velocity of the wheel, and hence its
units are ticks/timestep. Note that you will also typically have a different β for your left and your
right wheel (i.e. βL 6= βR). These βL and βR are different from the βF of the transistor.

(f) By measuring the car with a PWM signal at different duty cycles, we can collect the velocity data of
the left and right wheel, as shown in the following table:

Table 1: The velocity of the left and the right wheel at different duty cycles of PWM signal

Duty Cycle ×255 (u[i]) Velocity of the left wheel (vL[i]) Velocity of the right wheel (vR[i])
80 147 127

120 218 187
160 294 253
200 370 317

Since the same input is applied to both the wheels, we can take advantage of the same “horizontal
stacking” trick you’ve seen before to be able to reuse computation. To identify the system we need to
setup matrix equations of left and right wheel in the form of:

DdataP ≈ S (11)
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where P =

[
θL θR
βL βR

]
. Find the matrix Ddata and matrix S needed to perform system identifica-

tion to get the matrix of parameters of the left and right wheel, P .

(g) Solve the matrix equation DdataP ≈ S with least squares to find θL, θR, βL, and βR. You may use
a jupyter notebook for computation.

(h) In most advanced systems, we usually use a combination of a physics-based equation and a data-centric
approach to build the model. In our case, the velocity of the motor can be written as

v[i] = kIAVG(u[i])− β (12)

where IAVG(u[i]) is the average collector current which is the function of the duty cycle that you have
already derived in Part 1. k represents the response of your motor speed to the average current. In our
simplified motor driver model in Part 1, you have already derived the expression for the IAVG of the
motor as a function of the circuit parameters and the duty cycleD. If we assume that the model from
Part 1 holds, determine the resistance ratio

(
RB,left

RB,right

)
from the model parameters you identified

in Part 2 item (f). Assume that the left motor and the right motor respond the same, that is, kL = kR.
The only difference is presumed to come from the resistors used.

(i) In order for the car to drive straight, the wheels must be moving at the same velocity. However, the
data from Table 1 tell us that two motors cannot run at the same velocity if the duty cycles of driving
PWM signals are the same. Based on the model you extracted in Part 2 item (f), if we want the car
to drive straight and uL = 100, what should uR be?
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5. Write Your Own Question And Provide a Thorough Solution.

Writing your own problems is a very important way to really learn material. The famous “Bloom’s Tax-
onomy” that lists the levels of learning (from the bottom up) is: Remember, Understand, Apply, Analyze,
Evaluate, and Create. Using what you know to create is the top level. We rarely ask you any homework
questions about the lowest level of straight-up remembering, expecting you to be able to do that yourself
(e.g. making flashcards). But we don’t want the same to be true about the highest level. As a practical mat-
ter, having some practice at trying to create problems helps you study for exams much better than simply
counting on solving existing practice problems. This is because thinking about how to create an interesting
problem forces you to really look at the material from the perspective of those who are going to create the
exams. Besides, this is fun. If you want to make a boring problem, go ahead. That is your prerogative. But
it is more fun to really engage with the material, discover something interesting, and then come up with a
problem that walks others down a journey that lets them share your discovery. You don’t have to achieve
this every week. But unless you try every week, it probably won’t ever happen.

You need to write your own question and provide a thorough solution to it. The scope of your question
should roughly overlap with the scope of this entire problem set. This is because we want you to exercise
your understanding of this material, and not earlier material in the course. However, feel free to combine
material here with earlier material, and clearly, you don’t have to engage with everything all at once. A
problem that just hits one aspect is also fine.

Note: One of the easiest ways to make your own problem is to modify an existing one. Ordinarily, we
do not ask you to cite official course materials themselves as you solve problems. This is an exception.
Because the problem making process involves creative inputs, you should be citing those here. It is a part of
professionalism to give appropriate attribution.

Just FYI: Another easy way to make your own question is to create a Jupyter part for a problem that had no
Jupyter part given, or to add additional Jupyter parts to an existing problem with Jupyter parts. This often
helps you learn, especially in case you have a programming bent.

6. Homework Process and Study Group

Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework? Write it down here where you’ll
need to remember it for the self-grade form.

Contributors:

• Kyle Tanghe.

• Anant Sahai.

• Miki Lustig.

• Aditya Arun.
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• Nathan Lambert.

• Sidney Buchbinder.

• Bozhi Yin.

• Kaitlyn Chan.

• Yi-Hsuan Lin.

• Vladimir Stojanovic.

• Moses Won.

Homework 8, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 11


