
Homework 12 @ 2021-11-13 21:03:03-08:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 UC Berkeley Homework 12
This homework is due on Friday, November 19, 2021, at 11:59PM. Self-grades
and HW Resubmission are due on Tuesday, November 23, 2021, at 11:59PM.

1. Reading Lecture Notes

Staying up to date with lectures is an important part of the learning process in this course. Here are links to
the notes that you need to read for this week: Note 19

(a) We know that a scalar function f(x) can be linearly approximated around a particular point x = x?

using Taylor’s series expansion as follows:

f(x) ≈ f(x?) +
df

dx
(x?) · (x− x?)

What is the equivalent linear approximation of a multivariate scalar function f(x, u) around a
particular expansion point (x?, u?)?

(b) Now assume we have a vector valued function given by

~f(~x, ~u) =


f1(~x, ~u)
f2(~x, ~u)

...
fn(~x, ~u)


Let the state ~x be n dimensional, and control ~u be k dimensional. What is the linear approximation
of the function ~f(~x, ~u) around a particular expansion point (~x?, ~u?)?

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 1

http://www.eecs16b.org/notes/fa21/note19.pdf


Homework 12 @ 2021-11-13 21:03:03-08:00

2. Low Rank Approximation of a Matrix Optional to do, but completely in scope.

In this question we will study the so called “low rank approximation” problem. As the name implies,
consider an arbitrary wide matrix X ∈ Rm×n, with m ≤ n. 1 We are interested in finding another matrix X̂
having specified lower rank k, such that X̂ is “closest” to X , i.e.,

min
X̂

∥∥∥X − X̂∥∥∥
F

(1)

subject to rank(X̂) ≤ k (2)

This problem goes to the heart of how we use the SVD for dimensionality reduction and to look at data.
If we view a data matrix as a collection of columns where each of the columns is a different data point,
then a rank-k approximation to that matrix is a collection of columns all of which represent points that
are all on a k-dimensional subspace. This discovery of hidden subspace structure is what finding low-rank
approximations is truly about.

(a) First, let’s understand one of the simpler interpretations of why rank-r approximations to huge matri-
ces are so useful. To specify an arbitrary m× n matrix, we have to choose mn independent elements
(entries). In other words, an arbitrary m×n matrix has mn degrees of freedom. How many indepen-
dent elements (degrees of freedom) do we have to know to specify a rank r matrix of the same
m× n size?
You will see that this number is a lot less than mn, when r is small. By storing only these independent
elements, we can compress our m×n matrix, reducing the amount we need to store to a small fraction
of the original size. By finding the best low-rank approximation, even to a matrix which is high rank,
we can achieve the best possible trade-off between compression efficiency and reconstruction error.
(HINT: Think about outer-product representations for a rank r matrix, for example, that given by the
SVD.)

(b) To understand this problem, we will have to also think about what it might mean to approximate a
matrix. For this, we use a natural notion of error for matrices.
In the previous homework, you were introduced to the Frobenius norm — which involved treating a
matrix as though it was just a big long vector filled with its entries.
Similar to how the regular vector norm measures the error in a least-squares context, the Frobenius
norm measures the error in this matrix approximation context.
We will now build up some properties of the Frobenius norm. More specifically, suppose we view a
matrix A as a list of columns:

A =
[
~a1 ~a2 · · · ~an

]
(3)

Show that the Frobenius norm‖A‖F =
√∑m

i=1

∑n
j=1

∣∣Aij∣∣2 for a matrix A can be understood in
terms of the regular Euclidean norms of its columns as:

‖A‖F =

√√√√ n∑
j=1

∥∥~aj∥∥2 (4)

This is useful because it justifies using Frobenius norm as a way to measure the length of a matrix
when we are really viewing the matrix as a collection of columns.

1It doesn’t matter if X is actually wide, square, or tall; for the sake of simplicity, we consider it as wide.

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 2



Homework 12 @ 2021-11-13 21:03:03-08:00

(c) Now we want to get into the “hidden subspace” aspect of this problem. To do this, we need a way of
talking about a potential subspace. To define a subspace, we need a basis. For convenience, we might
as well think of an orthonormal basis. Let the matrix B consist of k orthonormal columns. The matrix
B defines a subspace S of dimension k; in particular, S = Col(B). Our underlying goal is to find an
optimal such subspace S for approximating the data in X and equivalently, to find an optimal basis B.
(Note here that B ∈ Rm×k. There are k columns, each of which is an m-dimensional vector.)
Before we worry about finding such a basis or subspace, it is good to understand how we would
approximate X using it. We already know how to approximate a single vector by a bunch of vectors in
a subspace – we take the projection. So to approximate a whole matrix X by vectors in a subspace, we
project each of the columns of X into the subspace simultaneously. By using the least squares formula
and the fact that B>B = I , we get that the result of this projection is BB>X .

To understand the quality of this projection, first show that
∥∥∥X −BB>X∥∥∥2

F
=‖X‖2F −

∥∥∥B>X∥∥∥2

F
.

(HINT: Let ~xi be the ith column of X . Use the Pythagorean theorem – for vectors – to show that∥∥∥~xi −BB>~xi∥∥∥2
=‖~xi‖2 −

∥∥∥B>~xi∥∥∥2
. Then use this to show what we want.)

We can see from the previous part that since ‖X‖2F is outside our control, finding a matrix B with k or-

thonormal columns that minimizes
∥∥∥X −BB>X∥∥∥2

F
is the same as finding a matrix B with k orthonormal

columns that maximizes
∥∥∥B>X∥∥∥2

F
. This is what the rest of the problem is about.

(d) Now, we are going to zoom in on a special case of our main theorem first. Consider the special case of
X = Σ matrices (again,X is wide withm rows and n ≥ m columns) that are already diagonal. Further
suppose that the diagonal of Σ is non-negative and sorted so that it has σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0
down the diagonal. (i.e. we are considering the kinds of Σ matrices that the SVD gives us.)
To warm up, further restrict attention to matrices B that are made up of only standard basis vectors
(i.e. each of the k columns of B has exactly one 1 in them and the rest of that column is zero.)
Furthermore, to be orthonormal, no two columns can have a 1 in the same row. These constraints
mean that B is like the identity matrix I ∈ Rm×m, except with m − k columns removed and the
remaining k columns possibly shuffled.

Under that assumption, show that for such a B, that
∥∥∥B>Σ

∥∥∥2

F
must be a sum of k different σ2

i .
(HINT: Realize that each of the columns of B basically will pick out exactly one of the σi. )

(e) Building on the previous part and its very special assumptions, show that any resulting BB>Σ is
going to be a diagonal matrix and have the i-th diagonal entry equal to either 0 or σi.
(HINT: The i-th standard basis vector ~ei is either one of the columns of B, or it is not. What happens
if it is one of the columns of B? What happens if it’s not one of the columns of B?)

(f) Building on the previous parts and their very special assumptions, show that a best such B for mini-

mizing
∥∥∥Σ−BB>Σ

∥∥∥2

F
is such that σ1, σ2, . . . , σk, 0, . . . , 0 is the diagonal of BB>Σ.

Further assume that all of the σi > σk for i < k. In other words, the singular values are strictly
decreasing. (This is just to prevent ties that wouldn’t change anything, but would slightly complicate
writing the proof.)
(HINT: You may cite Homework 3 Problem 8. There’s a reason why we assigned that problem to you.
What do you want to maximize here?)

(g) Now we have gotten warmed up by dealing with the very special case with the artificial restriction
that B has to be made of standard basis vectors. Now, we remove that artificial restriction. From

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 3

https://eecs16b.org/homework/sol03.pdf


Homework 12 @ 2021-11-13 21:03:03-08:00

this point forward, B is a generic matrix with k orthonormal columns. They can be anything we
want. Let’s look at the columns ~ci of C = B>. We can immediately see that B>Σ = CΣ =[
σ1~c1 σ2~c2 · · · σm~cm ~0 · · · ~0

]
.

So we need to get a handle on these columns. Since‖C‖2F =‖B‖2F = k, we know that
∑n

i=1‖~ci‖
2 = k.

We also know that since they are norms, that each of the‖~ci‖2 ≥ 0.
Show that‖~ci‖2 ≤ 1 for every i = 1, . . . ,m.
(HINT: Invoke Gram-Schmidt to assert that you can extend B with m − k more orthonormal vectors
to get a square orthonormal matrix B̃. Then, since B̃>B̃ = B̃B̃> = I , what do you know about the
norms of the columns of B̃>? What is the relationship of those norms to the norms of ~ci? )

(h) You can see from above that
∥∥∥B>Σ

∥∥∥2

F
=
∑m

i=1 σ
2
i ‖~ci‖

2 and that further 0 ≤‖~ci‖2 ≤ 1 for each i and

their sum
∑m

i=1‖~ci‖
2 = k.

Further assume that all of the σi > σj for i < j. (This is just to prevent ties that wouldn’t change
anything, but would complicate writing the proof.)
Show that under those constraints,

∑m
i=1 σ

2
i ‖~ci‖

2 ≤
∑k

i=1 σ
2
i .

(Hint: Again, you may cite Homework 3 Problem 8. There is a reason we made you do that earlier.).

Because you know this bound can be hit, you have actually proved that the best k-dimensional subspace for
approximating Σ in Frobenius norm is just that spanned by the first k standard basis vectors. In other words,
the best rank k approximation to a diagonal matrix Σ with non-negative elements σi ≥ 0 on the diagonal
that are non-increasing (i.e. σi ≥ σj if i < j) is the diagonal matrix with σ1, σ2, . . . , σk on the diagonal at
the beginning and zero everywhere else.

(i) We have already proved in Homework 11 that using the SVD, the Frobenius norm can be understood
in terms of the singular values, i.e.,‖A‖2F =

∑min(m,n)
i=1 σ2

i , where σi’s are the singular values of A.

Now solve for X̂ in equation (1) using the results you developed so far in earlier parts of this problem
for the diagonal case.
(HINT: The SVD of X is going to be useful here.)

Congratulations! You have now been walked (hopefully not dragged!) through an elementary proof of why
the SVD gives you the best low-rank approximation to a matrix of data. This is the heart of PCA.

In the linear-algebraic (and machine learning) literature, this is called the Eckhart-Young-Mirsky Theorem
but all of the proofs that are easily accessible online or in standard textbooks take a more challenging (but
shorter) route to the result. The argument given here is in more elementary 16AB style — it is the figurative
long “green circle” trail down from the top of the mountain as compared to the black diamond path taken by
more experienced skiers. Anyway, this important result justifies many uses of the SVD in machine learning,
control, and statistics.

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 4

https://eecs16b.org/homework/sol03.pdf
https://eecs16b.org/homework/prob11.pdf


Homework 12 @ 2021-11-13 21:03:03-08:00

3. Inverse Kinematics

Figure 1: An example of an arm parameterized by θ0, θ1, θ2, and θ3 with the end effector at point ~f(~θ).

Suppose you have a robotic arm composed of several rotating joints. The lengths ri of the arm are fixed, but
you can control the arm by specifying the amount of rotation θi for each joint. If we have an arm with four
joints, it can be parameterized by:

~θ =


θ0

θ1

θ2

θ3

 . (5)

Suppose further that we have some target point ~t ∈ R2, which represents a point in the 2D space, and
we would like for the end of the arm, called the end effector, to reach for the target. From physics and
kinematics, we can find the function ~f(~θ) that given the angles of each joint can return the position of the
end effector. Figure 1 shows a visualization of an arm rotated by ~θ. To make the arm reach for the target ~t,
we want to find where the function ~g defined as

~g(~θ) = ~f(~θ)− ~t (6)

is equal to ~0.

Note that this would be simple to do if ~f had an inverse. However due to physics and rotations, many
sines and cosines appear in the forward kinematics and ~f becomes highly nonlinear. Inverse kinematics
is the problem of given this point in space that we want to reach, what should we set the joint angles of
our arm to? This ends up being a crucial problem to solve, and inverse kinematics appears everywhere in
robotics, control, and computer graphics applications. To learn more about how to solve these problems, we
recommend taking EECS 106A, but we will now provide one such imperfect way to solve this problem.

To accomplish this, we use the spirit of Newton’s method for solving potentially nonlinear equations. You
might have seen Newton’s method for finding roots of scalar functions in your calculus course. In this 1-D
case, you have a real scalar function g of a single parameter θ and we want to find a θ̂ so that g(θ̂) = 0.

Step i of Newton’s method does the following, where our current estimate of θ̂ is θ(i):

1. Linearize g around θ(i) to get an approximation g̃:

g̃(θ) = g(θ(i)) + g′(θ(i))(θ − θ(i)) (7)

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 5



Homework 12 @ 2021-11-13 21:03:03-08:00

2. We want to find the roots of g, and will get closer by finding the roots of this linear approximation g̃.
Thus we want to set g̃(θ) = 0 to get

0 = g(θ(i)) + g′(θ(i))(θ − θ(i)) (8)

θ = θ(i) − g(θ(i))

g′(θ(i))
(9)

3. Therefore for the next iteration, we set θ(i+1) = θ(i) − g(θ(i))

g′(θ(i))
, and repeat.

We will iterate this until g(θ) is close enough to 0 for our application. In practice, instead of solving
exactly for g(θ) = 0, in the second step of iteration i, we may chose to move θ(i) by a fixed step-size η in
the direction that the first-order approximation to the function suggests, but not all the way. This is done
because the derivative g′(θ(i)) might be very different from g′(θ(i+1)). After all, linearization is only valid
in a local neighborhood. (Isn’t it interesting that you’ve already seen the idea of just taking small steps
before? You saw it in the problem where we iteratively solved least-squares problems. So this is the spirit
of gradient descent as well.)

While you might have seen Newton’s method as described above in your calculus courses, you might not
have seen the vector-generalization of it. It follows exactly the same spirit. The first-order approximation to
the vector valued function ~g(~θ) at ~θ(i) is now ~g(~θ(i)) +J~g(~θ

(i))(~θ− ~θ(i)) where J~g(~θ) is the Jacobian matrix
of the function ~g(~θ). For this problem, we will be using a robotic arm with 4 joints in a 2-dimensional space.
Therefore, the Jacobian of ~g(~θ) will be a 2x4 matrix, and it is computed by calculating the partial derivatives
of ~g(~θ):

J~g =

∂gx(~θ)
∂θ1

∂gx(~θ)
∂θ2

∂gx(~θ)
∂θ3

∂gx(~θ)
∂θ4

∂gy(~θ)
∂θ1

∂gy(~θ)
∂θ2

∂gy(~θ)
∂θ3

∂gy(~θ)
∂θ4

 . (10)

In this notation, we use ~g(~θ) = [gx(~θ) gy(~θ)]
T where gx(~θ) is the x coordinate of the end effector and

gy(~θ) is the y coordinate in our 2D space.

The Newton algorithm in this case is an iterative method that gives us successively better estimates for our

vector ~̂θ. If we start with some guess ~θ(i), then the next guess is given by

~θ(i+1) = ~θ(i) − ηJ†~g (~θ(i))~g(~θ(i)) (11)

where η is adjusted to determine how large of a step we make between ~θ(i) and ~θ(i+1). Notice that we need
to invert the Jacobian matrix of first-partial-derivatives, and this matrix is not square. It is in fact a wide
matrix. Fortunately, we now know how to "invert" any matrix, using the Moore-Penrose pseudoinverse that
you saw in a previous homework. The minimality property of the Moore-Penrose pseudoinverse that we
saw is extremley useful here because we would rather take small steps than big ones. And when tracking
a moving reference, we’d like to have the joint angles change in a minimal way rather than in some very
convoluted fashion.

The following problem will guide you step-by-step through the implementation of the pseudoinverse. The
three steps of the pseudoinverse algorithm are:

1. First, compute the compact-form SVD of the input matrix.

2. Next, we compute Σ−1 by inverting each nonzero singular value σi. We assume that any singular value
less than some ε is the same as 0, since inverting small values will cause numerical issues.

3. Finally, we compute the pseudoinverse by multiplying the matrices together in the right order.

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 6



Homework 12 @ 2021-11-13 21:03:03-08:00

The next three parts guide you through the code to be written for the pseudoinverse.

(a) In the pseudoinverse function, compute the SVD of the input matrix A by using the appro-
priate Numpy function.
(HINT: It is useful to read the documentation for the Numpy functions involved so that you use them
correctly. For example, for this problem you want the compact SVD so what argument should you call
svd with? What exactly does the SVD function return in Numpy?)

(b) To save memory space, the NumPy algorithm returns the matrix Σ as a one-dimensional array of the
singular values. Use this vector to compute the diagonal entries of Σ−1. To be careful of numerical
issues, first threshold the singular values, and only invert the singular values above a certain value ε,
considering smaller ones as 0.
The reason is that you don’t want to have very big entries in the pseudoinverse because that will
defeat the point of you using a small step-size η to stay within the rough neighborhood that your linear
approximation is valid. Considering small singular values as being 0 stops this from happening.

(c) We now have all of the parts to compute the relevant pseudoinverse of A. Finish the last line of the
function to calculate the pseudoinverse.
(HINT: np.diag can be a very useful tool in converting a vector into a square diagonal matrix. Also
remember to use .T to get transposes.)

(d) There are three test cases that you can use to determine if your pseudoinverse function works correctly.
In the first case, the arm is able to reach the target, and the end of the arm will be touching the target.
In the second case, the arm should be pointing in a straight line towards the blue circle. The last case
is the same as the second with the addition that a singular value will be very close to zero to test your
pseudoinverse function’s ability to handle small singular values.
There is also an animated test case that will move the target in and out of the reach of the arm. Verify
that the arm follows the target correctly and points towards the target when it is out of reach.
Finally, there is a test case where you can drag the target position and the robot joints will update
automatically as you track the target. You can also click anywhere on the plot and the robot will
attempt to reach it.
Describe what you see happening in the animation as well as the plot where you drag the target
position.

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 7



Homework 12 @ 2021-11-13 21:03:03-08:00

4. Linearizing for understanding amplification
Linearization isn’t just something that is important for control, robotics, machine learning, and optimization
— it is one of the standard tools used across different areas, including thinking about circuits.

The circuit below is a voltage amplifier, where the element inside the box is a bipolar junction transistor
(BJT). You do not need to know what a BJT is to do this question.

Figure 2: Voltage amplifier circuit using a BJT

The BJT in the circuit can be modeled quite accurately as a nonlinear, voltage-controlled current source,
where the collector current IC is given by:

IC(Vin) = IS · e
Vin
VTH , (12)

where VTH is the thermal voltage. We can assume VTH = 26 mV at room temperature. IS is a constant
whose exact value we are not giving you because we want you to find ways of eliminating it in favor of other
quantities whenever possible.

Let’s consider the 2N3904 model of a BJT, where the above expression for IC(Vin) holds as long as 0.2 V <
Vout < 40 V, and 0.1 mA < IC < 10 mA. (Note that the 2N3904 is a cheap transistor that people often use
in personal projects. You can get them for 3 cents each if you buy in bulk.)

The goal of this circuit is to pick a particular point (V ?
in, V

?
out) so that any small variation δVin in the

input voltage Vin can be amplified to a relatively larger variation δVout in the output voltage Vout.
In other words, if Vin = V ?

in + δVin and Vout = V ?
out + δVout, then we want the magnitude of the

‘amplification gain’ given by
∣∣∣ δVoutδVin

∣∣∣ to be large. We’re going to investigate this amplification using
linearization.

(NOTE: in this problem, δV is single variable indicating a small variation in V , not δ × V .)

(a) Write a symbolic expression for Vout as a function of IC , VDD and R in Fig 2.
(b) Now let’s linearize IC in the neighborhood of an input voltage V ?

in and a specific I?C . Assume that you
have a found a particular pair of input voltage V ?

in and current I?C that satisfy the current equation (12).

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 8



Homework 12 @ 2021-11-13 21:03:03-08:00

We can look at nearby input voltages and see how much the current changes. We can write the lin-
earized expression for the collector current around this point as:

IC(Vin) = IC(V ?
in) +m(Vin − V ?

in) = I?C +m δVin (13)

where δVin = Vin − V ?
in is the change in input voltage.

What is m here as a function of I?C and VTH?
(If you take EE105, you will learn that this m is called the transconductance, which is usually written
gm, and is the single most important parameter in most analog circuit designs. )
(HINT: First just find m by taking the appropriate derivative and using the chain rule as needed. Then
leverage the Taylor’s series expansion of the exponential function to express it in terms of the desired
quantities.)

(c) We now have a linear relationship between small changes in current and voltage, δIC = m δVin

around a known solution (I?C , V
?

in). This is called a “bias point” in circuits terminology. (This is also
why related things in neural nets are called bias terms — their job is to get the nonlinearity to behave
the way we want it to.)
As a reminder, the goal of this problem is to pick a particular point (V ?

in, V
?

out) so that any small
variation δVin in the input voltage Vin can be amplified to a relatively larger variation δVout in
the output voltage Vout. In other words, if Vin = V ?

in +δVin and Vout = V ?
out +δVout, then we want

the magnitude of the ‘amplification gain’ given by
∣∣∣ δVoutδVin

∣∣∣ to be large.
Plug in your linearized equation for IC in the answer from part (a). Define

V ?
out = VDD −RI?C

so that it makes sense to view Vout = V ?
out + δVout when we have Vin = V ?

in + δVin, and find the
approximate linear relationship between δVout and δVin.
The ratio δVout

δVin
is called the small-signal voltage gain of this amplifier around this bias point.

(d) Assuming that VDD = 10 V, R = 1 kΩ, and I?C = 1 mA when V ?
in = 0.65 V, verify that the

magnitude of the small-signal voltage gain
∣∣∣ δVoutδVin

∣∣∣ between the input and the output around this
bias point is approximately 38.
(HINT: Remember VTH = 26 mV)

(e) If I?C = 9 mA when V ?
in = 0.7 V with all other parameters remaining fixed, verify that the magnitude

of the small-signal voltage gain
∣∣∣ δVoutδVin

∣∣∣ between the input and the output around this bias point
is approximately 350.

(f) If you wished to make an amplifier with as large of a small signal gain as possible, which operating
(bias) point would you choose among V ?

in = 0.65 V (part d) and V ?
in = 0.7 V (part e)?

This shows you how by appropriately biasing (choosing an operating point), we can adjust what our
gain is for small signals. Although here, we just wanted to show you this as a simple application of
linearization, these ideas are developed a lot further in 105, 140, and other courses to create things like
op-amps and other analog information-processing systems.

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 9



Homework 12 @ 2021-11-13 21:03:03-08:00

5. Single-dimensional linearization
This is an exercise around linearization of a scalar system. The scalar nonlinear differential equation we
have is

d

dt
x(t) = sin

(
x(t)

)
+ u(t). (14)

(a) The first thing we want to do is find equilibria of the system. Recall that these are the values of (x, u)
such that the derivative of x is 0. Suppose we want to investigate potential expansion points (x?, u?)
with u? = 0. Sketch sin(x?) for−4π ≤ x? ≤ 4π and intersect it with the horizontal line at 0. This
will show us the equilibria points, where sin(x?) + u? = 0.

(b) Show that all x(t) = x?m = mπ satisfy (14) together with u? = 0, i.e. u(t) = u? = 0 ∀t.

Let us zoom in on two choices: x?−1 = −π and x?0 = 0. Looking at the sketch we made, these seem like
representative points.

(c) Linearize the system (14) around the equilibrium (x?0, u
?) = (0, 0). What is the resulting linearized

scalar differential equation for x`(t) = x(t)−x?0 = x(t)−0, involving u`(t) = u(t)−u? = u(t)−0?
Remember we are ignoring the higher order terms during linearization so we have to account for those
using some w(t) that can be thought of as noise.

(d) For the linearized approximate system model that you found in the previous part, what happens if we
try to discretize time to intervals of duration ∆? Assume now we use a piecewise constant control
input u`(t) = u`[n] in the time interval t ∈ [n∆, (n + 1)∆), where ∆ is small relative to the ranges
of controls applied, and that we sample the state x every ∆ (that is, at every t = n∆, where n is an
integer) as well. Write out the resulting scalar discrete-time control system model, i.e. what is
x`[n + 1] in terms of x`[n] and u`[n]? This model is an approximation of what will happen if we
actually applied a piecewise constant control input to the original nonlinear differential equation at the
operating point (x?, u?). Here you can ignore the w(t) term.

(e) Is the (approximate) discrete-time system you found in the previous part stable or unstable?
(f) Now linearize the system (14) around the equilibrium (x?−1, u

?) = (−π, 0). What is the resulting
scalar differential equation for x`(t) = x(t)− (−π) involving u`(t) = u(t)− 0?
Again, don’t forget to include the w(t) term to capture the approximation error.

(g) For the linearized approximate system model that you found in the previous part, what happens if we
try to discretize time to intervals of duration ∆? Assume now we use a piecewise constant control
input u`(t) = u`[n] in the time interval t ∈ [n∆, (n + 1)∆), where ∆ is small relative to the ranges
of controls applied, and that we sample the state x every ∆ (that is, at every t = n∆, where n is an
integer) as well. Write out the resulting scalar discrete-time control system model, i.e. what is
x`[n + 1] in terms of x`[n] and u`[n]? This model is an approximation of what will happen if we
actually applied a piecewise constant control input to the original nonlinear differential equation at the
operating point (x?, u?). Here you can ignore the w(t) term.

(h) Is the (approximate) discrete-time system you found in the previous part stable or unstable?
(i) Suppose for the two linearized discrete-time systems derived in parts (d) and (g), we chose to apply a

feedback law
u`[n] = −k(x`[n]− x?).

For what range of k values, would the resulting linearized discrete-time systems be stable? Your
answer will depend on ∆.

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 10



Homework 12 @ 2021-11-13 21:03:03-08:00

(HINT: Your solution to part (d) should be

x`[n+ 1] = e∆x`[n] + u`[n](e∆ − 1)

and solution to part (g) should be

x`[n+ 1] = e−∆x`[n] + u`[n](1− e−∆)

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 11



Homework 12 @ 2021-11-13 21:03:03-08:00

6. Write Your Own Question And Provide a Thorough Solution.

Writing your own problems is a very important way to really learn material. The famous “Bloom’s Tax-
onomy” that lists the levels of learning (from the bottom up) is: Remember, Understand, Apply, Analyze,
Evaluate, and Create. Using what you know to create is the top level. We rarely ask you any homework
questions about the lowest level of straight-up remembering, expecting you to be able to do that yourself
(e.g. making flashcards). But we don’t want the same to be true about the highest level. As a practical mat-
ter, having some practice at trying to create problems helps you study for exams much better than simply
counting on solving existing practice problems. This is because thinking about how to create an interesting
problem forces you to really look at the material from the perspective of those who are going to create the
exams. Besides, this is fun. If you want to make a boring problem, go ahead. That is your prerogative. But
it is more fun to really engage with the material, discover something interesting, and then come up with a
problem that walks others down a journey that lets them share your discovery. You don’t have to achieve
this every week. But unless you try every week, it probably won’t ever happen.

You need to write your own question and provide a thorough solution to it. The scope of your question
should roughly overlap with the scope of this entire problem set. This is because we want you to exercise
your understanding of this material, and not earlier material in the course. However, feel free to combine
material here with earlier material, and clearly, you don’t have to engage with everything all at once. A
problem that just hits one aspect is also fine.

Note: One of the easiest ways to make your own problem is to modify an existing one. Ordinarily, we
do not ask you to cite official course materials themselves as you solve problems. This is an exception.
Because the problem making process involves creative inputs, you should be citing those here. It is a part of
professionalism to give appropriate attribution.

Just FYI: Another easy way to make your own question is to create a Jupyter part for a problem that had no
Jupyter part given, or to add additional Jupyter parts to an existing problem with Jupyter parts. This often
helps you learn, especially in case you have a programming bent.

7. Homework Process and Study Group

Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework? Write it down here where you’ll
need to remember it for the self-grade form.

Contributors:

• Yuxun Zhou.

• Anant Sahai.

• Druv Pai.

• Rahul Arya.

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 12



Homework 12 @ 2021-11-13 21:03:03-08:00

• Moses Won.

• Aditya Arun.

• Pavan Bhargava.

• Stephen Bailey.

• Ashwin Vangipuram.

• Kris Pister.

• Alex Devonport.

• Regina Eckert.

Homework 12, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 13


