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EECS 16B Designing Information Devices and Systems II
Fall 2021 UC Berkeley Homework 14
This homework is due on Thursday, December 9, 2021, at 11:59PM. Self-
grades and HW Resubmission are due on Saturday, December 11, 2021, at
11:59PM.

1. Reading Lecture Notes

Staying up to date with lectures is an important part of the learning process in this course. Here are links to
the notes that you need to read for this week: Note 14 Note 15 Note 19 Note 2j

(a) What is the least squares solution for the problem A~x ≈ ~b when all matrices and vectors have
complex entries?

(b) Given a complex orthonormal matrix A, what is the projection of a vector~b onto the columns of
A?

(c) What is the pseudoinverse of a matrixA in terms of the compact SVD ofA? You may find looking
at a previous homework problem helpful.
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2. Segway Tours (Optional)

A segway is a stand on two wheels, and can be thought of as an inverted pendulum. The segway works by
applying a force (through the spinning wheels) to the base of the segway, This controls both the position on
the segway and the angle of the stand. As the driver pushes on the stand, the segway tries to bring itself back
to the upright position, and it can only do this by moving the base.

Recall that you have analyzed a basic version of this segway question in Homework 0 problem 5. You
were given a linear discrete time representation of the segway dynamics, and were guided through the steps
to find if it’s possible to make the segway reach some desired states, essentially laying the foundation of
controllability. Now, we will see how to derive the linear discrete time system from the equations of motion,
and then do some further refined analysis based on our improved knowledge of controllabilty.

The main question we wish to answer is: Is it possible for the segway to be brought upright and to a stop
from any initial configuration? There is only one input (force) used to control two outputs (position and
angle). Let’s model the segway as a cart-pole system and analyze.

A cart-pole system can be fully described by its position p, velocity dp
dt , angle θ, and angular velocity dθ

dt .
We can write this as the continuous time state vector ~x as follows:

~x =


p
dp
dt
θ
dθ
dt

 (1)

The input to this system is a scalar quantity u(t) at time t, which is the force F applied to the cart (or base
of the segway). Let the coefficient of friction be k.

The equations of motion for this system are as follows:
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The derivation of these equations is a mechanics problem and not in 16B scope, but interested students can
look up the details online.

(a) First let’s linearize the system of equations in (2) about the upright position at rest, i.e. θ∗ = 0 and
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dθ
dt ∗ = 0. Show that the linearized system of equations is given by the following state space form:

d~x(t)

dt
=


0 1 0 0

0 − k
M −m

M g 0
0 0 0 1

0 k
Ml

M+m
Ml g 0


︸ ︷︷ ︸

A

~x(t) +


0
1
M
0
− 1
Ml


︸ ︷︷ ︸

~b

u(t) (3)

(HINT: Since we are linearizing around θ∗ = 0 and dθ
dt ∗ = 0, you can use the following approximations

for small values of θ:

sin θ ≈ θ
sin2 θ ≈ 0

cos θ ≈ 1(
dθ

dt

)2

≈ 0.

You do not have to do the full linearization using Taylor series, you can just substitute the approxima-
tions above. You will get the same answer as doing the linear Taylor series approximation.)
Notice that for this particular choice of θ∗ and dθ

dt ∗, the linearization does not depend on what p or dp
dt

is. This is partially a stroke of luck and partially a consequence of the fact that the position p doesn’t
appear in the dynamics equations.

(b) For all subsequent parts, assume that m = 1, M = 10, g = 10, l = 1 and k = 0.1. Let’s consider the
discrete time representation of the state space (3) at time t = n∆. For simplicity, assume ∆ = 1. The
discrete time state ~xd follows the following linear model:

~xd[n+ 1] = Ad~xd[n] +~bdud[n] (4)

where Ad ∈ R4×4 and ~bd ∈ R4×1. Find Ad and ~bd in terms of the eigenvalues and eigenvectors of
A, and ∆. State numerical values for Ad and ~bd.. Use the Jupyter notebook segway.ipynb for
all numerical calculations, and approximate the results to 2 or 3 significant figures.
(HINT: Recall that the continuous time scalar differential equation

dz(t)

dt
= λz(t) + cw(t)

can be represented in discrete time (n∆ = t) as follows:

zd[n+ 1] =

 (eλ∆) · zd[n] +
(
eλ∆−1
λ

)
· cwd[n] if λ 6= 0

(1) · zd[n] + (∆) · cwd[n] if λ = 0

Use the eigendecompostion of A = V ΛV −1 to do change of basis variables, and you should finally
reach

~xd[n+ 1] = V ΛdV
−1︸ ︷︷ ︸

Ad

~xd[n] + VMdV
−1~b︸ ︷︷ ︸

~bd

ud[n]
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What are the elements of Λd and Md in terms of the elements of Λ? You may find in later parts of the
notebook that you haveAd and~bd which can serve as a sanity check for your derivation and numerical
calculations.)

(c) Show that the linear-approximation discrete time system in (4) is controllable by using the ap-
propriate matrix in the Jupyter notebook.
(HINT: Is the controllability matrix full rank? You have to use numerical values of Ad and~bd from the
previous part. Use the Jupyter notebook for all numerical calculations.)

(d) Since the linear-approximation discrete time system is controllable, it is possible to reach any final
state ~xd,f starting from any initial state ~xd,i using an appropriate sequence of inputs in exactly 4 steps,
provided that the deviations are small enough so that the linearization approximation is valid. Set up
a set of linear equations to solve for the ud[0], ud[1], ud[2], ud[3] given the initial and final states.

Find the input sequence to reach the upright position ~xd,f = ~xd[4] =


0
0
0
0

 starting from an initial

state ~xd,i = ~xd[0] =


−2
3.1
0.3
−0.6

. Use the Jupyter notebook for all numerical calculations and simulation.

Explain qualitatively what you observe from the segway simulation.
(HINT: Use (4) and loop unrolling to express ~xd[4] as a linear combination of ~xd[0], ud[3], ud[2],
ud[1], ud[0].)

(e) Now suppose we try to use an initial state ~xd,i = ~xd[0] =


−2
3.1
3.3
−0.6

 for which the approximation is

poor since θi = 3.3 is very far from the linearization point θ∗ = 0. Using the equations derived in
the previous part, use the Jupyter notebook to determine the input sequence to reach the same
final upright position. Explain qualitatively what you observe from the segway simulation. Use
the Jupyter notebook for all numerical calculations and simulation.

Compare the simulation results in parts (d) and (e). In both cases, the segway finally stabilizes to an upright
position at rest. However, in part (d) the behavior of the segway looks more realistic whereas in part (e) it is
doing some wild unexpected rotations.

This is because the linearization approximation is valid with the small initial values of θ and dθ
dt in part

(d). So this discrete time linear model is a good representation of the original continuous time non-linear
system. Hence the trajectory taken by the segway from the initial to the final position is similar to what we
may expect from real life physics.

However in part (e), the linearization approximation is not really valid. The approximate model still con-
verges to the final upright position because (4) is controllable as we proved in part (c). However, since the
approximation is not valid anymore, this discrete time linear model is not a good representation of the orig-
inal continuous time non-linear system. Hence the predicted trajectory is extremely weird with the segway
undergoing a few full rotations, and does not match what we would expect from the real system.

We can still analyze the system in continuous time by directly solving the set of non-linear differential
equations in (2) (out of 16B scope) or in discrete time using a finely discretized (and still nonlinear) version
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of (2). Note that there are two independent distinctions we are making, i.e. continuous vs discrete, and
linear vs non-linear. Part (e) failed because it’s beyond the scope of the linear model, not because we are
using a discrete time system. A non-linear discrete time analysis would also give the correct solution.

(f) Let’s analyze the behavior of the segway by comparing the continuous time linear model and contin-
uous time non-linear model. Deriving the control input to bring the segway to the upright position
at rest requires more care which is out of 16B scope, so we will just look at the simple case of the
segway freely settling to steady state in the absence of any control input, i.e. u(t) = 0. Toggle the
linearized flag between True and False in the Jupyter notebook, and qualitatively explain
the differences in the trajectory as the segway freely swings around.

There’s actually much more that we could have you do with this problem with what is in scope in 16B. But
the semester is drawing to a close and you need to study for other courses too. So we will stop here.
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3. Adapting Proofs to the Complex Case

At many points in the course, we have made assumptions that various matrices or eigenvalues are real while
discussing various theorems. If you have noticed, this has always happened in contexts where we have
invoked orthonormality during the proof or statement of the result. Now that you understand the idea of
orthonormality for complex vectors, and how to adapt Gram-Schmitt to complex vectors, you can go back
and remove those restrictions. This problem asks you to do exactly that.

Unlike many of the problems that we have given you in 16A and 16B, this problem has far less hand-
holding — there aren’t multiple parts breaking down each step for you. Fortunately, you have the existing
proofs in your notes to work based on. So this problem has a secondary function to help you solidify your
understanding of these earlier concepts ahead of the final exam.

There is one concept that you will need beyond the idea of what orthogonality means for complex vectors
as well as the idea of conjugate-transposes of vectors and matrices. The analogy of a real symmetric matrix
S that satisfies S = S> is what is called a Hermitian matrix H that satisfies H = H∗ where H∗ = H> is
the conjugate-transpose of H .

(a) The upper-triangularization theorem for all (potentially complex) square matrices A says that there
exists an orthonormal (possibly complex) basis V so that V ∗AV is upper-triangular.
Adapt the proof from the real case with assumed real eigenvalues to prove this theorem.
Feel free to assume that any square matrix has an (potentially complex) eigenvalue/eigenvector pair.
You don’t need to prove this. But you can make no other assumptions.
(HINT: Use the exact same argument as before, just use conjugate-transposes instead of transposes.)
Congratulations, once you have completed this part you essentially can solve all systems of linear
differential equations based on what you know, and you can also complete the proof that having all the
eigenvalues being stable implies BIBO stability.

(b) The spectral theorem for Hermitian matrices says that a Hermitian matrix has all real eigenvalues and
an orthonormal set of eigenvectors.
Adapt the proof from the real symmetric case to prove this theorem.
(HINT: As before, you should just leverage upper-triangularization and use the fact that (ABC)∗ =
C∗B∗A∗. There is a reason that this part comes after the first part.)

(c) The SVD for complex matrices says that any rectangular (potentially complex) matrixA can be written
as A =

∑
i σi~ui~v

∗
i where σi are real positive numbers and the collection {~ui} are orthonormal (but

potentially complex) as well as {~vi}.
Adapt the derivation of the SVD from the real case to prove this theorem.
Feel free to assume that A is wide. (Since you can just conjugate-transpose everything to get a tall
matrix to become wide.)
(HINT: Analogously to before, you’re going to have to show that the matrixA∗A is Hermitian and that
it has non-negative eigenvalues. Use the previous part. There is a reason that this part comes after the
previous parts.)
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4. Minimum Norm Variants (Optional)

In lecture and HW, you saw how to solve minimum norm problems in which we have a wide matrix A and
solve A~x = ~y such that ~x is a minimum norm solution:‖~x‖ ≤‖~z‖ for all ~z such that A~z = ~y.

We also saw in the HW how we can solve some variants in which we were interested in minimizing the norm
‖C~x‖ instead. You have solved the case where C is invertible and square or a tall matrix. This question asks
you about the case when C is a wide matrix. The key issue is that wide matrices have nontrivial nullspaces
— that means that there are “free” directions in which we can vary ~x while not having to pay anything. How
do we best take advantage of these “free” directions?

Parts (a-b) are connected; parts (c-d) are another group that can be done independently of (a-b); and parts
(e-g) are another group that can be started independently of either (a-b) or (c-d). If you get stuck, try
another group. During debugging, many TAs found it easier to start with parts (c-g), and coming back to
(a-b) at the end.

In parts (a) and (b) you will reduce the problem of minimizing ‖C~x‖ to a problem which you solved a
variant of: minimizing only the norm of a vector ‖~̃xc‖ with some constraint involving some freely chosen
~̃xf without requiring direct consideration of the matrix C. With (a) and (b), we wish to give you another
example of converting problems that are new into problems you have solved before or problems that are
proximal to ones you have solved before. In parts (c) and (d) we emphasize the skill of solving a problem in
a nice setting to gain some insight before relaxing the nice properties in parts (e) to (g) for more generality.

(a) Given a wide matrix A (with m columns and n rows) and a wide matrix C (with m columns and r
rows), we want to solve:

min
~x such that A~x=~y

‖C~x‖ (5)

As mentioned above, the key new issue is to isolate the “free” directions in which we can vary ~x so
that they might be properly exploited. Consider the full SVD of C = UΣCV

> =
∑`

i=1 σc,i~ui~v
>
i .

Here, we write:

V =
[

VC | VF

]
, VC =

 | | |
~v1 ~v2 · · · ~v`
| | |

, VF =

 | |
~v`+1 · · · ~vm
| |

 (6)

so that the columns of VC all correspond to singular values σc,i > 0 of C, and the columns of VF form
an orthonormal basis for the nullspace of C.

Change variables in the problem to be in terms of ~̃x =

[
~̃xc
~̃xf

]
where the `-dimensional ~̃xc has i-th entry

x̃c,i = αi~v
>
i ~x, and the (m − `)-dimensional ~̃xf has i-th entry x̃f,i = ~v>`+i~x. In vector/matrix form,
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~̃xf = V >F ~x and ~̃xc =


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · α`

V >C ~x. Or directly:

~̃x =

[
~̃xc
~̃xf

]
=




α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · α`

V >C
V >F


~x,


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · α`

V >C ∈ R`×m, V >F ∈ R(m−`)×m.

(7)
Express ~x in terms of ~̃xf and ~̃xc. Assume the αi 6= 0 so the relevant matrix is invertible.

What is‖C~x‖ in terms of ~̃xf and ~̃xc? Simplify as much as you can for full credit.
(HINT: If you get stuck on how to express ~x in terms of the new variables, think about the special case
when ` = 1 and α1 = 1

2 . How is this different from when α1 = 1? The SVD of C might be useful when
looking at‖C~x‖. A fact you may use without proof is that a vector ~x may be decomposed uniquely as
~x = ~xV +~xV⊥ where ~xV is in the span of a matrix V ’s columns, and ~xV⊥ is in the subspace of vectors
orthogonal to V ’s columns.)

(b) Continuing the previous part, give appropriate values for the αi so that the problem (5) becomes

min

~̃x=

~̃xc
~̃xf

such that
[
AC | AF

]~̃xc
~̃xf

=~y

‖~̃xc‖ (8)

Give explicit expressions for AC and AF in terms of the original A and terms arising from the
SVD of C. Because you have picked values for the αi, there should be no αi in your final expressions
for full credit.
(HINT: How do the singular values σc,i interact with the αi? Then apply the appropriate substitution
to (5) to get (8).)

(c) Let us focus on a simple case. (You can do this even if you didn’t get the previous parts.) Suppose
that A =

[
AC | AF

]
where the columns of AF are orthonormal, as well as orthogonal to the

columns of AC . The columns of A together span the entire n-dimensional space. We directly write

~x =

[
~xc
~xf

]
so that A~x = AC~xc + AF~xf . Now suppose that we want to solve A~x = ~y and only care

about minimizing‖~xc‖. We don’t care about the length of ~xf — it can be as big or small as necessary.
In other words, we want to solve:

min

~x=

~xc
~xf

such that
[
AC | AF

]~xc
~xf

=~y

‖~xc‖ (9)

Show that the optimal solution has ~xf = A>F~y.
(HINT: Multiplying both sides of something by A>F might be helpful.)

(d) Continuing the previous part, compute the optimal ~xc. Show your work.
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(HINT: What is the work that ~xc needs to do? ~y−AFA>F~y might play a useful role, as will the SVD of
AC =

∑
i σi~ti ~w

>
i . )

(e) Now suppose that AC did not necessarily have its columns orthogonal to AF . Continue to assume that
AF has orthonormal columns. (You can do this part even if you didn’t get any of the previous parts.)
Write the matrix AC = AC⊥+ACF where the columns of ACF are all in the column span of AF and
the columns of AC⊥ are all orthogonal to the columns of AF . Give an expression for ACF in terms
of AC and AF .
(HINT: What does this have to do with projection and least squares?)

(f) Continuing the previous part, compute the optimal ~xc that solves (9): (copied below)

min

~x=

~xc
~xf

such that
[
AC | AF

]~xc
~xf

=~y

‖~xc‖

Show your work. Feel free to call the SVD as a black box as a part of your computation.
(HINT: What is the work that ~xc needs to do? The SVD of AC⊥ might be useful.)

(g) Continuing the previous part, compute the optimal ~xf . Show your work.
You can use the optimal ~xc in your expression just assuming that you did the previous part correctly,
even if you didn’t. You can also assume a decomposition AC = AC⊥ + ACF from further above in
part (e) without having to write what these are, just assume that you did them correctly, even if you
didn’t do them at all.
(HINT: What is the work that ~xf needs to do? How is ACF relevant here?
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5. Remote Final Accomodation

If you are a student who will be outside of the 150 mile radius of UC Berkeley or if you are a student who
has a University-approved accommodation to being in-person, such as having an exemption to the vaccine
mandate, please fill out this Google form if you haven’t already to request remote accommodations for the
final exam which will take place on Friday, December 17, from 8 to 11 am PT.

6. Study Group Feedback Survey

If you are a student who participated in the study group survey we gave in the early weeks of the semester,
we would really appreciate your feedback on the group you were matched with. Though we had a section
devoted to it in the mid-semester feedback form, it was anonymized, which can not serve as good data for
the research team. Please fill out this Google form to provide feedback about the study groups.

7. End of Semester Survey (Updated)

Congratulations on making it to the last week of the semester! We would love to get your feedback about
the class. Please fill out this Google form. We will be awarding 1 global extra credit point to every student
in the class if we hit 70% end-of-semester survey completion by each individual grade category in this class
by Wednesday, December 15, at 11:59 PM. In other words, we want at least 70% of freshmen, 70% of
sophomores, 70% of juniors, and 70% of seniors in this class to complete the survey in order for everyone
to get extra credit. To improve our ability to zoom in on helping students who are struggling, we are asking
for students to voluntarily disclose their identities while filling out the surveys (unlike the campus course
surveys, we do not store your identities with survey responses). Such disclosures are purely voluntary, and
our only purpose in asking for them is to be able to zoom in on the much smaller subpopulation that is
performing poorly in the course and see what might be different for them.
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8. Write Your Own Question And Provide a Thorough Solution.

Writing your own problems is a very important way to really learn material. The famous “Bloom’s Tax-
onomy” that lists the levels of learning (from the bottom up) is: Remember, Understand, Apply, Analyze,
Evaluate, and Create. Using what you know to create is the top level. We rarely ask you any homework
questions about the lowest level of straight-up remembering, expecting you to be able to do that yourself
(e.g. making flashcards). But we don’t want the same to be true about the highest level. As a practical mat-
ter, having some practice at trying to create problems helps you study for exams much better than simply
counting on solving existing practice problems. This is because thinking about how to create an interesting
problem forces you to really look at the material from the perspective of those who are going to create the
exams. Besides, this is fun. If you want to make a boring problem, go ahead. That is your prerogative. But
it is more fun to really engage with the material, discover something interesting, and then come up with a
problem that walks others down a journey that lets them share your discovery. You don’t have to achieve
this every week. But unless you try every week, it probably won’t ever happen.

You need to write your own question and provide a thorough solution to it. The scope of your question
should roughly overlap with the scope of this entire problem set. This is because we want you to exercise
your understanding of this material, and not earlier material in the course. However, feel free to combine
material here with earlier material, and clearly, you don’t have to engage with everything all at once. A
problem that just hits one aspect is also fine.

Note: One of the easiest ways to make your own problem is to modify an existing one. Ordinarily, we
do not ask you to cite official course materials themselves as you solve problems. This is an exception.
Because the problem making process involves creative inputs, you should be citing those here. It is a part of
professionalism to give appropriate attribution.

Just FYI: Another easy way to make your own question is to create a Jupyter part for a problem that had no
Jupyter part given, or to add additional Jupyter parts to an existing problem with Jupyter parts. This often
helps you learn, especially in case you have a programming bent.
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9. Homework Process and Study Group

Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework? Write it down here where you’ll
need to remember it for the self-grade form.

Contributors:

• Ayan Biswas.

• Daniel Abraham.

• Anant Sahai.

• Kuan-Yun Lee.

• Divija Hasteer.
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