16 B Prof. Anant Sana (OH: Thu 2-3pm)
Today: Orthonermalization

Motivating Example:
Relaid to HW 6
Dem. Sysemid problem
Demo ${ }^{\text {Ex }}$. 4 .
The model could be: $y[i+1]=b u[i]$
Called
auto-restessive

Want to do Ssistim-1D. a) Tres do fit all the models
Gold standard: Works in practice
Silver Standard: predict ry
"holdout set" vel in test dada.
To do as, need t solve a family of nested least-syumer problems
Approach: $P P \approx S$ Set up approximate equations

$$
S=\left[\begin{array}{l}
y[7) \\
y(8] \\
j
\end{array}\right] \quad P=\left[\begin{array}{l}
b \\
j
\end{array}\right] \quad\left[\begin{array}{l}
b \\
a_{0} \\
\end{array}\right] a\left[\begin{array}{l}
b \\
a_{0} \\
a_{1} \\
\end{array}\right] \cdots \cdots
$$

$$
D=\underbrace{\left[\vec{d}_{1} \vec{d}_{2} \cdots \vec{d}_{k+1}\right.}_{\# \text { moshes } d_{i m}} \overbrace{}^{\left[\vec{d}^{2}\right.}
$$

Other places this car hepper:
2) Pobnomial fitting.

LS. Problem O:

$$
\left[\overrightarrow{d_{1}}\right)_{p_{1}} \approx \vec{s}
$$

2) $O M P$

LS Problem I

$$
\left[\overrightarrow{d_{1}} \overrightarrow{d_{2}}\right] \quad \overline{P_{2}} \approx \vec{s}
$$

Ls Problem 2

$$
\left[\vec{d}_{1} \vec{d}_{2} \vec{d}_{3}\right] \vec{b}_{3} \simeq \vec{s}
$$

How do you 1 love leart-squms?

$$
\stackrel{\hat{p}}{=}=\left(D^{\top} D\right)^{-1} D^{\top} \vec{s}
$$

Can we make things footer?
Can we solve a whole nested f-wib

- 45 problem r faster.

Though: (1) ($\left.P^{T} D\right)^{-1}$ is the painful step. when is this fest?
(2) Can we change coordinates somehow?

$$
\begin{aligned}
& \text { Where is } D^{T} D \text { the identity? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \vec{d}_{i}^{\tau} \vec{d}_{i}=q \quad \text { diagonal curies of) } \\
& \vec{d}_{i}^{\top} \vec{d}_{j}=0 \text { if } i \neq j \text { ak. }\left\langle\overrightarrow{d_{j}}, \vec{d}_{i}\right\rangle=0 \\
& \text { ic. } \xrightarrow{\text { ortheg.nal }} \text { "perpendialu } \\
& \|\vec{d}\|^{2}=1 \\
& \left\|\vec{d}_{i}\right\|=1 \in \text { normalized }=\sqrt{\left(d_{i}[i)^{2}+\left(d_{i} ;(i)\right)^{2}+\cdots\left(d_{i} ;-a\right)^{2}\right.}
\end{aligned}
$$

Desired properds: Orthonormal columns.

$$
Q=\left[\begin{array}{llll}
\vec{q} & \vec{q}_{2} & \ldots & \vec{q}_{k}
\end{array}\right] \quad \text { Knew if } Q \text { is othenomp neoteric }
$$

favored lest for a matrix with orth. $Q^{\top} Q=I R_{1} R_{k \times k}$ "orthonormal mar. x^{x}

How can we project onto the span ot th collins of Q Want to find \vec{x} sit. $\underbrace{\underbrace{Q}_{\hat{y}} \text { projection of } \vec{y} \text { is and } \operatorname{span}[Q]}_{\bar{\lambda}}$

$$
\begin{aligned}
& \hat{\hat{x}}=\left(Q^{\top} Q^{-1}\right)^{\top} Q^{\top} \vec{y}=Q^{\top} \vec{y} \\
& \vec{y}=Q \frac{\hat{x}}{\vec{y}}=Q^{Q} \vec{y}
\end{aligned}
$$

es $\quad n \times n$ Projection operation for Q.

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 / \sqrt{2} \\
0 & 1 / \sqrt{2}
\end{array}\right] \quad Q^{\top} Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad Q Q^{\top}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 / 1 / 1 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
1 / 2\left(y_{2}+y_{3}\right) \\
1 / 2(5 \times 43
\end{array}\right]
$$

Given a basis expressed as an onthumel Q
for a subpece

Projection oudo it is vers faut.
Goal (Subgoal of makins thinss fart):
Given a sequence of vectus $\vec{d}_{1}, \vec{d}_{2}, \ldots, \vec{d}_{l}$
Retorn anathur sequence of veators $\vec{q}_{r}, \vec{q}_{w}, \ldots, \vec{q}_{e}$
S.t. $Q=\left[\vec{q}_{1}, \ldots, \vec{q}_{l}\right]$ is orthonarmal and $\forall k \leq l \quad \operatorname{span}\left\{\vec{d}_{1}, \ldots, \vec{d}_{k}\right\}=\operatorname{span}\left\{\vec{q}_{r}, \ldots, \bar{q}_{k}\right\}$.

Orthonormalization is the nome sive- to this prowes.
Stant with simplest care. $\left\{\tilde{d}_{1}\right\} \leftrightarrows$ jwot one veater. Need $\vec{q}_{1}=\alpha \vec{d}_{1} \leftarrow$ s. it spons the same sab, pace.
Q: Hou to pide α ?
Guas: Divide by nurm?

$$
\vec{q}_{1}=\frac{\vec{d}_{i}}{\left\|\vec{d}_{1}\right\|} \quad \text { b-mput } \quad \vec{q}_{1}^{\top} \vec{q}_{1}=\frac{\vec{d}_{1}^{\top} \vec{d}_{r}}{\left\|\vec{d}_{1}\right\| \cdot\left\|\vec{d}_{1},\right\|}=\frac{\left\|\overrightarrow{d_{1}}\right\|^{2}}{\left\|\vec{d}_{1}\right\|^{2}}=i
$$

First nontrival case: $\left\{\vec{d}_{r}, \vec{d}_{2}\right\}$
wand $\overrightarrow{q_{2}}$

$P_{\text {ofit }}$ chan and stapen spanad bs \vec{d}
$\vec{z}_{2}=\vec{d}_{2}-\vec{q}_{1}\left(\vec{q}_{1}^{\top} \vec{d}_{2}\right)$
介Parallel to desired $\overrightarrow{q_{2}}$
So led $\vec{q}_{2}=\vec{z}_{2} /\left\|\vec{z}_{2}\right\|$

Sters

1) Project $\overrightarrow{d_{2}}$ out $\overrightarrow{d_{1}}$
2) Sabtrad HL; prijetion- at a residuct the in 1
3) Normelize it.

Bracks it $\left\|\vec{z}_{i}\right\|=0$ or $\vec{z}_{2}=\overrightarrow{0}$
Happens onls if \vec{d}_{2} is a multiph ot \vec{d}_{1}.
Generlize $\operatorname{Given}\left\{\overrightarrow{d_{1}}, \ldots, \vec{d}_{k}, \vec{d}_{k+1}\right\}$
How can we get \vec{q}_{k+1} given tht

$$
\begin{aligned}
& \text { iven tht } \\
& \text { we alrudy } Q_{k}=\left[\vec{q}_{r 1}, \ldots, \vec{q}_{k}\right. \\
& \text { have }
\end{aligned}
$$

Led $D_{k}=\left[\vec{d}_{r}, \ldots, \vec{d}_{k}\right]$ with $\operatorname{atspac}\left(Q_{k}\right)$ $=-11 \sin \left(D_{k}\right)$
Want $\vec{z}_{k+1}=\vec{d}_{k+1}-$ Prijection ot $_{\text {onto }} \vec{d}_{k+1}$ ouso s-Pspece spenned bs columns of D_{k}

$$
=\vec{d}_{k+1}-\underbrace{D_{k}\left(D_{k} D_{t}\right)^{-1} D_{k}^{\top} \vec{d}_{k+1}}
$$

Since Pröetron

$$
\begin{aligned}
& \text { ince } \operatorname{Projefin}\left(P_{1}\right) \\
& \text { into colpore }
\end{aligned}
$$

Privection Operader for calspan D_{k}

$$
\begin{aligned}
& \text { ir the same as } \\
& \text { parumitisp }\left(Q_{k}\right)=\vec{d}_{k+1}-Q_{k} Q_{k}^{\top} \vec{d}_{k+1} \\
&=\vec{d}_{k+1}-\sum_{j=1}^{k} \vec{q}_{j}\left(\vec{q}_{j}^{\top} d_{k+1}\right)
\end{aligned}
$$

Can normulite to sut $\vec{q}_{k+1}={\overrightarrow{z_{k+1}}}_{\boldsymbol{q}_{1}}^{\| \vec{z}_{k+1}} \| r$

$$
\text { Is } Q_{k+1}=\left[Q_{k} ; \vec{q}_{k+1}\right] \text { orthonormal? }
$$

Need to cheek: $\left\|\vec{q}_{k+1}\right\|=1$? Yes because
Is $\vec{q}_{k+1} \perp q_{i}$ for $i=1, \ldots, k$
Check. $\quad \vec{q}_{i}^{T} \vec{q}_{k+1}=\frac{\vec{q}_{i}^{\top} \vec{z}_{k+1}}{\left\|\vec{z}_{k+1}\right\|}=\frac{1}{\left.\left\|\vec{z}_{k+1}\right\|\right)}\left(\begin{array}{l}\vec{q}_{i}^{T} \vec{d}_{k+1} \\ -\sum_{j=1}^{k} \vec{q}_{i}^{\top} \vec{q}_{j}\left(\vec{q}_{k}^{\top} d_{k}\right)\end{array}\right.$
$\left.\left.=\frac{1}{\| \overrightarrow{z_{k+1}} \mid}\left(\vec{q}_{i} \overrightarrow{d_{k+1}}\right)-0-0-0-1 \cdot \vec{q}_{i}^{T} \vec{d}_{k-r}\right)-0-0-0\right)$
$=0 \quad$ So $\vec{q}_{k+1} \perp \vec{q}_{i} f_{2 r}=1-k$.
(3)

Subgoal Achieved.: Gram-Schmidd Othoriormelizadon
Is this actually ans fader?7?
$\frac{N_{2} w \text { was }}{\text { How many operations }+ \text { set } \vec{q}_{k} ?}=\vec{d}_{k+1}-\sum_{j=1}^{k} \vec{q}_{j}\left(\vec{q}_{j} \vec{d}_{k+1}\right)$

$$
\begin{aligned}
& n=\frac{k^{2} n}{k} \text { to sat } \vec{z}_{k} \\
& \text { for nombision }
\end{aligned}
$$

For $k=1, \ldots, l$
So tot ul cost $\vec{q}_{1}, \ldots \vec{q}_{e}$
is $O\left(l^{2} n\right)$

What about the id was? $\left(D^{\top} D\right)^{\top} D^{\top} \vec{y}$

$$
F-O \text { being } \ell
$$

$n>l$. So Both way for the l-dim con alone cost the some.
Savings exist relative L th l^{4} term is compidis all the LS. pritkm

Get sisnificut speedup-

$$
\begin{aligned}
& (100)^{4}=10^{8} e 100 \text { million } \\
& (100)^{3}=10^{6} \leftarrow 1 \text { million. }
\end{aligned}
$$

Final Approach: To solve nested least square problems:

1) Orthonormolin the camus $\left[\overrightarrow{d_{1}}, \ldots, \overrightarrow{d e}\right]$
to $\operatorname{get} Q=\left[\vec{q}_{1}, \ldots, \vec{q}_{e}\right]$
2) Compute $Q^{\top} \vec{y}$ to get solutions to all nested potions

So in the new coordinates: to see the solution for just k chs, look of $\vec{q}_{i}^{\top} \vec{y}, \ldots, \vec{q}_{k}^{\sigma} \vec{y}$.
This giver you a projection $\sum_{i=1}^{k} \vec{q}_{i}\left(\vec{q}_{i}^{\top} \vec{y}\right)$ that best approximate \bar{y} in the s-bsgece saved bo

$$
\vec{d}_{1}^{0}, \ldots, \vec{d}_{2} .
$$

