16 B Prof. Anant Sakai
Today: Upper-triang-laritatron
Last-time: Introduced 6-5 orthonormalization.

Due dates extended for $H W \& \&$ mig Re. os
Due to release on Mon inter d ot Sat. +2 doss

Loose end: How can we deal with " A " manatrices that do not have
 eigenvectors.

Previously, if A had n distinct eigenvectors, we could choose $U=\left[\vec{v}_{1}, \vec{v}_{1}, \ldots, \vec{v}_{n}\right]$ and the \tilde{A} would be diagonal.
\Longrightarrow Would tren-vector problem into n
Goal: "nice" independent scalar problems.
Not always possible to find n distinct eigenvectors. e.s. RLC critralls, damped.

Upper-trianglar.

$$
\text { e las } 0^{\prime \prime} \text { belau th diag. nil. }
$$

We got chaired scaler problems.
Also nice enough.
Can we always find abiosis U sit.
We got a scalar pollen, and then another scale pablen the had the first call pooknen. ar. her impel.
es.

$$
\left[\begin{array}{ccc}
\lambda_{1} & \cdots & * \\
0 & \lambda_{2} & : \\
0 & 0 & \lambda_{3}
\end{array}\right] \quad N \operatorname{ced} \quad U=\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right]
$$

Start with 2×2 matrix case. $n=2$.
Picking \vec{u}_{1} to be ar eigenvector of A. So $A \vec{u}_{1}=\lambda, \vec{u}_{1}$.
Pick $\overrightarrow{u_{1}}$ to han $\cap \vec{u}_{1} \|=\{$.
Can do this because all matrices hum at lear one eigenvector..
In the HW, we see the any choice for the second vector- would have worked at lon, as it was lineally index of \vec{u}_{1}.
S. pick \vec{r}_{1} as on second vector so $\|\vec{r}\|=2$ \& $\vec{r}_{1} \perp \vec{u}_{1}$ ie. $\vec{r}_{1}^{\top} \overrightarrow{u_{1}}=0$

$$
\begin{aligned}
& \tilde{A}=U^{-1} A U=\left[\begin{array}{l}
\overrightarrow{u_{1}} \\
\vec{r}_{1}^{\top}
\end{array}\right] A\left[\begin{array}{ll}
\vec{u}_{1} & \vec{r}_{1} \\
\vec{r}_{1}
\end{array}\right]=\left[\begin{array}{l}
\vec{u}_{1}^{\top} \\
\vec{r}_{1}^{\top}
\end{array}\right]\left[\begin{array}{ll}
A \vec{u}_{1} & A \overrightarrow{r_{1}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\lambda_{1} \vec{u}^{\top} \overrightarrow{u_{1}^{\prime}} & \vec{u}_{1}^{\top} A \overrightarrow{r_{1}} \\
\lambda_{r}^{\top} \top \overrightarrow{u_{1}} & \vec{r}_{1}^{\top} A \vec{r}_{1}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda & * \\
0 & *
\end{array}\right] \leftarrow \text { uppertringution. }
\end{aligned}
$$

Question: How can I Find \vec{r}_{1} ?
General Question: Given a vector- \vec{v}, can I get an onthonoml $\| \vec{*} \mid=1$
that has \vec{v} as its frost elcumind.
Wart Orthenal $\left[\vec{v}, \vec{q}_{2}, \vec{q}_{3}, \ldots \vec{q}_{n}\right]$.
Trick: Run 6S on $\left[\vec{v}, \vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right]$ E/ Last lecture sumer evert where \vec{e}_{i} is the $i^{\text {th }}$ c.llamn of idecaht marx.
Chelleasee. this set is detrwith limens dep.
Just ran G.S. It will generate \vec{z}_{i}. (Whit bon st after)
But one of these \vec{z}_{i} will be $a \overrightarrow{0}$.
Just threw that ore oud.
At the end, well han a vectors tho will span th auk sue n

Moving beyond 2×2.
Try 3×3 case. A

Pick \vec{v}_{1} s.f. $A \overrightarrow{v_{1}}=\lambda_{1} \vec{v}_{1}$ \& $\left\|\overrightarrow{v_{1}}\right\|=2 \quad \Leftarrow$ Works for Using the about, Gprocedime, we can set \vec{r}_{1}, \vec{r}_{2}

Call this $R=\left[\vec{r}_{1}, \vec{r}_{2}\right] \in \omega_{0 \text { ore }}, f_{-}$

$$
\begin{aligned}
V^{-1} A V & =V^{\top} A V \\
& =\left[\begin{array}{cc}
\vec{v}_{1}^{\top} \\
R^{\sigma}
\end{array}\right] A\left[\begin{array}{ll}
\vec{v}_{1} & R
\end{array}\right] \\
& =\left[\begin{array}{ll}
\overrightarrow{\vec{r}}_{R^{\sigma}}^{\top} \\
R^{\sigma}
\end{array}\right]\left[\begin{array}{ll}
A \vec{v}_{1} & A R
\end{array}\right] \\
& =\left[\begin{array}{ll}
\vec{v}^{\top} \\
R^{\tau}
\end{array}\right]\left[\begin{array}{ll}
\lambda \vec{v}_{1} & A R
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda_{1} \vec{v}_{1}^{\top} \vec{v}_{1} & \vec{v}_{1}^{\top} \\
\lambda R^{\top} & A R \\
\lambda \vec{v}_{1} & R^{\top} A R
\end{array}\right] \\
& =\left[\begin{array}{ll}
x & \vec{v}_{1}^{\top} A R \\
\overrightarrow{0} & R^{\top} A R
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \text { ina } R \text { is } \begin{aligned}
& \text { orthenoml. }
\end{aligned}
$$

Note : For exposition convenience, we are going to assume that d il eigenvalue, eigenvector we find are real. Progress towers upper-triangider.

$$
\rightarrow \text { This is a } 2 \times 2 \text { mamix. }=R^{n+1} n A^{n} n n^{n-1}
$$

Is this upper-tranaglau! Who know??!!?
$(\ddots$ - Are we stack??
Recurse! (And hope...)
We know $\exists U_{2}$ sit U_{2} is onthanoml (so $U_{2}^{T}=U_{2}^{-1}$)
$\hat{2 \times 2}^{1_{2}}$ and $U_{2}^{\top}\left(R^{\top} A R\right) U_{2}=T_{2}=\left[\frac{R}{2}\right]$

$$
=\left(U_{2}^{\top} R^{\top}\right) A\left(R U_{2}\right)
$$

$$
\begin{aligned}
&=\left(R U_{2}\right)^{\top} A\left(R U_{2}\right)=T_{2} \\
& 2 \times 2 \text { uppertornseL }
\end{aligned}
$$

Ow gd is d. han cen orthinum) be $U=\left[\overrightarrow{v_{1}}--\right]$
So tha $U^{\sigma} A U$ is uppaitures.
Sajpects using $\mathbb{R} U_{2}$ instad of \mathbb{R} in oristal basia.
So \mathbb{f} l wed $U=\left[\begin{array}{ll}\vec{v}_{1} & R \\ U_{2}\end{array}\right]$
The

$$
\begin{aligned}
U^{T} A U & =\left[\begin{array}{cc}
x & \vec{v}_{1}^{\top} A R U_{2} \\
\overrightarrow{0} & \left(R U_{2}\right)^{\top} A\left(R U_{2}\right)
\end{array}\right] H^{\text {H.pe }} \\
& =\left[\begin{array}{ll}
\lambda & \\
\overrightarrow{0} & T_{2}
\end{array}\right] \Leftarrow \underline{\text { upper-fringe }}
\end{aligned}
$$

Hoge hinges on $\left[v_{1}\left(\mathbb{R} \mathrm{U}_{2}\right)\right]$ beis outhonoumi)
$\operatorname{Arc}\left(R v_{2}\right) \perp$ to \vec{v}_{1} ?
S owe set

$$
\stackrel{\rightharpoonup}{v}_{1}^{\top} R U_{2}=\left(\vec{v}_{1}^{\top} R\right) O_{2}=\overrightarrow{0}^{\top} U_{2}=\overrightarrow{0}^{\top}
$$

$$
I_{s}\left(R U_{2}\right)^{\top} R U_{2}=I ?
$$

$$
U_{2}^{+} R^{T} R U_{2}=U_{2}^{T} I U_{2}=U_{2}^{T} U_{2}=I
$$

We got aen orthonormel basts U in which A is U.T.
Con we do thir in general? When did we uer " 2 "?
or 3?

We needed to be able to upper-trianjuluik an arbitions

$$
\begin{aligned}
& (n-1)(n-1) \\
& \text { mand }
\end{aligned}
$$

using an orthonoumal basis Un-1
Then $U=\left[\begin{array}{lll}v_{1} & R U_{n-1}\end{array}\right]$ would worle.
So we can do it bs induation on n
Assume if works for $(n-1) x(n-1)$.
We just showed it worked for $n \times n$.
Nal Base Case.

(1)

All dominos fall.
Bors Case: $\begin{aligned} & 2 x^{2} \\ & (x)\end{aligned}$
[a] $U=\left[\frac{9}{4}\right]$
A Alrecols upperedrianshe.
How to Upper-Triangulize:
UT (A) : retans a pair $U_{n} n$ ortheroal
$\hat{N}_{n-\text { dim }}$
\& T upper-tranoil
s.t. $U^{\mathbb{E} A} \mathrm{U}=\mathrm{T}$

UT (A):
if A in 1 -dim, retorn $(U=[1], T=A$.)
else. Lef $\vec{\nabla}$, be an eigenech of A with ejsunter λ.
If compl-x Use G.S.] to constrat $n-1$ vectur, $R=\left[\vec{r}_{1}, \ldots, \vec{r}_{n-1}\right]$ s.d. $\left[\overrightarrow{\nabla_{1}} R\right]$ is ontho normul

Compat $B=R_{R}^{R} A R . \longleftarrow(n-1) \times(n-1)$ madrix. Lef $U^{\prime}, T^{\prime}=\operatorname{UT}(B)$
Set $U=\left[U, R U^{\prime}\right]$

$$
T=U^{\boxplus} A U
$$

$\operatorname{Retum}(U, T)$
Schar Pecompoilion - upper-trianstuiation.

