16B. Prof. Anant Sahai
Today: Finish Uppertriangularization stos
Undestand consequences for stabilith Symmetar mastax Case

Recell: $\quad \widetilde{A}=U^{\top} A U$ where $U^{\top} U=I$ since U_{V} is an othonermibis
1 Upper-triangJar.

$$
\hat{A}=\left[\begin{array}{llll}
\lambda_{1} & \cdots & \cdots & -- \\
\lambda_{2} & \cdots & - \\
\bigoplus^{\prime} \lambda_{3} & \cdots & \cdots
\end{array}\right] \text { ist af " }
$$

Loose-end 2: What are the eigenulnes ot \tilde{A} ?
a) An thuse the same as the eisonulos of A ?
λ_{i} is an eigenvalue of \widehat{A}
$\hat{e}_{\text {ents on th diasond of } \tilde{A} \text {. }}$
(b) What are they?

Check Consider ${\underset{\sim}{A}}_{\tilde{A}-\lambda J}^{\tilde{A}}:\left[\begin{array}{rrr}\lambda_{1}-\lambda & \cdots & \cdots \\ \lambda_{2}-\lambda & - & \vdots \\ 0 & \ddots & \cdots \\ \lambda_{n}-\lambda\end{array}\right]$
We know tht for an eigcnuala λ, this motrwis not invertible. i.e if has lia de ep columns.

Also we want if $\lambda \neq \lambda_{i}$ for ens i, then tha λ is not an eijenulane.
In this care, nue of sle di-sonsl catries an zoro.
Cleim: This imples \tilde{A}_{λ} is invertoble..
Why? Gaussian Eliminabrer Sacceeds! Can back-sutstinde to uniquels solue
1_{m}
be invinted.
egns $\overrightarrow{f l}_{\lambda} \vec{x}=\vec{b}$

Other dicection:
If $\lambda=\lambda i$ for s-me i, then λ is an eigen-l-n ie. \tilde{A}_{λ} is nod inverthble il it hes a O on thadignenl.

Why does haves a zare on the dias.an imply linerly dep columne? A: 6.E. will sat stack. Won't Find a Rivet there.

$$
\left[\begin{array}{llll}
\neq 0 & s L_{f} f & & \\
\hdashline 0 & \neq 0 & & \\
& & 0 & \cdots
\end{array}\right]
$$

Alternatively:
This eth column is a liner combe of the coins before it.
Became we can solve for the beterghits bs bat sushi
a) Arc there λ_{i} th some eijunvilus as A ?

$$
\begin{align*}
\frac{\operatorname{det}(\lambda I-\tilde{A})}{\operatorname{det}} & =\operatorname{det}\left(\lambda I-U^{\top} A U\right) \\
& =\operatorname{det}\left(\lambda U^{T} U-U^{\top} A U\right) \\
& =\operatorname{det}\left(U^{T}(\lambda I-A) U\right) \\
& =\operatorname{det}\left(U^{\top}\right) \operatorname{det}(\lambda I-A) \operatorname{det}(U) \\
& =\operatorname{det}(\lambda I-A) \operatorname{det}\left(U U^{\top}\right) \operatorname{det}(U) \\
& =\operatorname{det}(\lambda I-A) \operatorname{det}\left(U^{\top} J^{\top}\right) \\
& =\operatorname{det}(\lambda I-A) \quad \operatorname{det}(I)=4
\end{align*}
$$

Same choachisti pols \Rightarrow same eismulls.

So how does this half with BIBO stability.?
original system

$$
\vec{x}[i+1]=A \vec{x}[i]+\vec{\omega}[i]_{a}\|\omega[i]\| \leq \epsilon
$$

Claim: This is Bibo stable it all the eisenutar) I A have $|\lambda|<1$
We dreads ground it whom A was dicsondisoble.

Waut to show $\exists k$ st. $\|\vec{x}[i]\| \leq k \cdot E$.
By Upper-trianglarization (Schur Decomposition)
$\exists \cup$ s.t. $\hat{A}=U^{T} A \cup$ is uppertriongdar.

$$
\tilde{A}=\left[\begin{array}{cc}
\lambda_{1} & \beta_{i} ; \\
\nabla^{\lambda_{2}} & \beta_{i j} \\
\lambda_{n-1} & \lambda_{n+n}
\end{array}\right] \quad \text { stiff }
$$

Change coondinates to $\bar{x}=\bigcup^{\top} \vec{x}$

Use the philosiyhy of strons induatrion (Backewads)
Stant at the ead:

$$
\tilde{x}_{n}[i+1]=\lambda_{n} \widetilde{x}[i]+v_{n}[i]
$$

Becanse $\left(\lambda_{n} \mid \subset\right)$, Tho is BiBo stable.

$$
\exists \text { constait } K_{n} \text { s-t }\left|\tilde{x}_{n}\right| \leq k_{n} \in \text {. }
$$

Base case Done.

$$
K_{i=} \text { patkech }=\frac{1}{K_{n}=\left|\lambda_{n}\right|}
$$

Consider \tilde{x}_{n-1}

$$
\begin{aligned}
& \overrightarrow{\tilde{x}}[i+1]=\tilde{A} \vec{x}[i]+U^{\top} \vec{\omega}[i] \\
& \underset{\sim}{\square} 0^{\circ} \xrightarrow[A]{\sigma} \longrightarrow \\
& \bar{A}=U^{\top} A U \\
& \text { Is thon bewnded? Yes) } \\
& \text { Call } \\
& \text { this } \\
& \vec{v}[:] \\
& \text { que know }\|\vec{v}[i]\| \leq \epsilon \\
& \left.\| v^{\top} \vec{\omega}\right) \|^{2}=\left(v^{\top} \vec{w}\right)^{\top}\left(u^{\top} \vec{w}\right) \quad B \overrightarrow{c_{3}} \\
& =\vec{\omega}^{\top} U U^{\sigma} \vec{\omega} \\
& =\vec{\omega}^{\top} \vec{\omega} \sin \alpha O V^{\top} \\
& =\|\vec{W}\|^{2} \quad=\vec{U} U=I
\end{aligned}
$$

$$
\tilde{x}_{n-1}[i+1]=\lambda_{n-1} \tilde{x}_{n-1}[i]+\left[\beta_{n-1, n} \tilde{x}_{n}[i]+v_{n-1}[i]\right.
$$

\mid know $\int \lambda_{n-1} \mid \subset$)
1 want to say $\exists K_{n-1}$ sit $\left|\tilde{x}_{n-1}\right| \leq K_{n-1} \in$
To get what I wand, Inced \square to be bounded.
But $\left|\beta_{n-1, n} \tilde{x}_{n}[i]+v_{n-1}[i]\right| \leq\left|\beta_{n-1, n}\right|\left|\tilde{x}_{n}[i)\right|+\left|v_{n-[i]}\right|$

$$
\leq\left|\beta_{n-1, n}\right| \cdot K_{n} \epsilon+\epsilon
$$

pectic number-

$$
\leq \underbrace{\left(\left|\beta_{n-1, n}\right| \cdot K_{n}+\mid\right) \in}_{K_{n-1}=\left(\frac{1}{\left.1-\mid \lambda_{n-1}\right)}\right)\left(\left|\beta_{n-1, n}\right| \cdot K_{n}+1\right)}
$$

Assume $\forall k$ in $l+1, l+2, \ldots, n$,
we know $\exists K_{k}$ sod. $\left[\tilde{x}_{\varepsilon}[i] \mid \leq K_{k} \cdot \epsilon\right.$
Wand to show $\mid\left\langle\tilde{x}_{e}\left[_{i}\right]\right| \leq k_{e} \cdot \epsilon$.

$$
\tilde{x}_{l}[i+1]=\lambda_{l} \tilde{x}_{l}[i]+\left(\sum_{k=l+1}^{n} \beta_{l, k} \tilde{x}_{k}[i]\right)+v_{l}[i]
$$

$=\left(\frac{1}{1-1 \lambda_{l} l}\right) \notin$ is banded $\left.b_{s}\left(\left(\sum_{l=l+1}^{n} \mid \beta_{l, c}\right) K_{e}\right)+1\right) \epsilon$
So $\exists K_{e}^{=\frac{\left(-1 \lambda_{l}\right)}{\nabla \cdot \lambda}}\left|\tilde{x}_{e}\right| \leq K_{e} \cdot \epsilon$

$$
\tilde{A}=\left[\begin{array}{lll}
\lambda_{1} & \beta_{i, j} \\
\nabla^{\lambda_{2}} & \beta_{i, j} \beta^{\prime} \beta_{n+1} \\
\lambda_{n}
\end{array}\right] \quad \text { stiff }=U^{\sigma} A U
$$

How do we know that these $\beta_{i j}$ are well behaved?
Could these $\beta_{i, j}$ be "ginormous"? \&unresimbbis hanse?

$$
A=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right] \quad Y N O
$$

Want to understand $U^{\top} A U$
Fist left' look af $\left(U^{T} A\right)=\left[\begin{array}{llll}U^{\top} \vec{a}_{1} & V^{\top} \vec{a} & \ldots V^{\top} \vec{a}_{k}\end{array}\right]$

$$
\begin{aligned}
\left\|U^{\top} \vec{a}_{i}\right\|^{2}=\vec{a}_{i}^{\top} \cup U \vec{a}_{i} & =\vec{a}_{i}^{\sigma} I \overrightarrow{a_{i}} \\
& =\vec{a}_{i}^{T} \vec{a}_{i}=\left\|\vec{a}_{i}\right\|^{2} \\
& =\sum_{i=1}^{n} a_{j i}^{2}
\end{aligned}
$$

Fact: The sum ot squarer of entries in $U^{\top} A$ is the same as the sunn ot squires of entries in A.

Definition The Frobenias Norm \| $A \|_{F}^{2}=\sum_{i, j}\left(a_{i j}\right)^{2}$
Sat If U is orthemel sean mature then Proud:

$$
\|U A\|_{F}=\|A\|_{F}
$$

From the detinue: $\|A\|_{F}=\iint A^{\top} \|_{F}$

$$
\|\tilde{A}\|_{F}=\left\|U^{\top} A U\right\|_{F}=\left\|\left(U^{\top} A U\right)^{\top}\right\|_{F}
$$

$$
\text { So } \tilde{A} \text { has bis enter }
$$

ours it A had them.

We know $\hat{A}=U^{T} A \cup$ is upperetrimpta.
Let's inst oles.

Alowser- triangular.

$$
\tilde{A}^{\top}=\left(U^{\top} A U\right)^{\top}=U^{\top} A^{\top} U
$$

What if $A=A^{\top}$ ie. A war a symmetric matrix?

$$
\Longrightarrow \tilde{A}^{\top}=\tilde{A}^{\top} \Longrightarrow \beta_{i j}=0 \quad \forall i, j
$$

\tilde{A} would be dicponel. 1 .

$$
\begin{aligned}
& \tilde{A}=\Lambda=U^{T} A U \\
& \Rightarrow A=U \Lambda U^{T}
\end{aligned}
$$

A would have to have a full complement of eisenucch, that are or th. gond to each. then

$$
\begin{aligned}
& 11 \quad=\left\|U^{T}\left(A^{T} U\right)\right\|_{F} \\
& \|A \cup\|_{F}=\left\|A^{\sigma} U\right\|_{F} \\
& \left\|U^{\top} A^{\top}\right\|_{F}=\left\|\left(U^{J} A\right)^{\top}\right\| F \\
& \text { Since } U^{T} U=I\left\|A^{J}\right\|_{F}=\left\|U^{\tau} A\right\|_{F} \\
& \Rightarrow U U^{\top}=I\|A\|_{F}=\|A\|_{F}
\end{aligned}
$$

Since $\overrightarrow{u_{i}}$ ir an eiscauchor!

$$
\begin{aligned}
A \vec{u}_{i}=\cup \Omega U^{\sigma} \vec{u}_{1} & =U \Omega\left[\begin{array}{c}
0 \\
\vdots \\
\vdots \\
\vdots \\
i
\end{array}\right]-i+l \text { fri, } \\
& =U\left[\begin{array}{c}
0 \\
\vdots \\
i_{1} \\
i
\end{array}\right]=\lambda_{i} \vec{u}_{i}
\end{aligned}
$$

Any real symmedis matrix with all rall eigenvalue
$h a s$ orthogonal eigenvectors and a fall complement of them
Question: Mast real symatore matinees have real eijenuctues?
Will do this next time...

