16 B Make-ap lecture due to zoom recording glith (2)
Prof. Anant Sahai
Today: Finish Upecetriongularisation stas: eigenvalues Undestend conseque nces for stabilits
Symmedin mosux Case

Recall: $\vec{A}=U^{\top} A U$ where $U^{r} U=I$ since U han not thenormal columnns

From last leature
How to Upper-Triangunize: \longleftarrow Assuming all real eigenvalues.
UT (A) : retuns a pair Unn orthumal
${ }^{*}{ }_{n-d i m}$
\& T uppertaresin
s.t. $\cup^{S} A \cup=T$

UT (A):
if A is I-dim, retern $(U=[i], T=A$.)
else. Lef \vec{v}, be a unit eigenecch of A with eissmiter λ.
If camplex Use G.S. to constreat $n-1$ vecturs $R=\left[\vec{r}_{1}, \ldots, \vec{r}_{m-1}\right]$
These boxes would have
to change
s.t. $[\vec{V}, R]$ is orthonormul.

Compat $B=R A R E(n-1) \times(n-1)$ matn x.
Lef $U^{\prime}, T^{\prime}=U T(B)$
Set $U=\left[\vec{v}_{1}, R U^{\prime}\right]$

$$
\begin{aligned}
& T=U^{T} A U \\
& \operatorname{Retum}(U, T)
\end{aligned}
$$

Scher Decomposition - upper-trianptiziation.

$$
\begin{aligned}
& \widetilde{A}=U^{\top} A U \text { whence } U^{r} U=I \text { since } U \text { han or thonormin column }
\end{aligned}
$$

2 Questions 1) What are the eigenvalues of \tilde{A} ?
2) How are the eigenvalues of \hat{A} related to the egenvolmy of A ?
$L \rightarrow$ Theg're the same.

1) General Fact: if a matrix is upper-triangular, the entries on the diagonal are the eigenvalues.

Consider

$$
\tilde{A}_{\lambda}=(\tilde{A}-\lambda I)
$$

We know that it λ is en eigenvalue of \tilde{A}, then the matrix \tilde{A}_{x} is not invertible. And vice-vers.

If $\lambda \neq \lambda_{i}$ for any i, then λ is not an eigenvalue of \tilde{A}.

$$
\begin{aligned}
& \text { If } \lambda \neq \lambda_{i} \text {, then } \tilde{A}_{\lambda}=\left[\begin{array}{llll}
\lambda_{1}-\lambda & & \ddots & \vdots \\
& \lambda_{2}-\lambda^{\prime} & - & \ddots \\
& & \ddots & \lambda_{n}-\lambda
\end{array}\right]
\end{aligned}
$$

has all nonzero entries on the diagonal.
$\Longrightarrow \tilde{A}_{x}$ is invertible.
Since $\tilde{A}_{x} \vec{x}=\vec{b}$ is uniquels solvecble bs back - substuturion.
$\Longrightarrow \lambda$ is not an eigenvalue of \tilde{A}.

Other direction: If $\lambda=\lambda_{i}$ for some:, them λ is an. eigenvalue.
ot

is not invertible. \Rightarrow Clacks Gaussian elimination will fol to find a pivot at id step.
Consider First i columns of \hat{A}_{x}.
claim. $\vec{a}_{\vec{a}, i}$ is a linear combination of the fins i-1 columns.
$\left[\begin{array}{ccccc}i_{n \omega} \\ \lambda_{1}-\lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2}-\lambda & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_{i-1}-\lambda & 0 \\ \vdots & \vdots & 0 & 0 \\ i & i & 0 & 0 \\ 1 & 1 & \vdots & \vdots\end{array}\right] \quad \begin{gathered}\text { can use back substiditoran }\end{gathered}$
\Rightarrow shows line dependence.

$$
i^{++\frac{9}{c}} \text { column } \text { of } \tilde{A}_{\lambda}
$$

$\Longrightarrow \tilde{A}_{\lambda}$ has a nullspace that is nontrivial
$\Longrightarrow \lambda$ is an eiscuvalue of \tilde{A}.
Claim Eigenveluer of \tilde{A} are the same as eiscnudus. A A.

$$
\text { Consider: } \begin{aligned}
\operatorname{det}(\lambda I-\tilde{A}) & =\operatorname{def}\left(\lambda I-U^{\top} A \cup\right) \\
& =\operatorname{det}\left(\lambda U^{\top} \cup-U^{\top} A \cup\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}\left(U^{\prime}(\lambda I-A) U\right) \\
& =\operatorname{det}\left(U^{\top}\right) \operatorname{det}(\lambda I-A) \operatorname{det}(U) \\
& =\operatorname{det}(\lambda I-A) \operatorname{det}\left(U^{\top}\right) \operatorname{det}(U) \\
& =\operatorname{det}(\lambda I-A) \operatorname{det}\left(U^{\top} U\right) \\
& =\operatorname{det}(\lambda I-A) \operatorname{det}\left(I^{2}\right)^{2} \\
& =\operatorname{det}(\lambda I-A)
\end{aligned}
$$

The two characteristic polynomials are the same.

$$
\Longrightarrow \text { eischualues are the same. }
$$

