16 B Make-ap lecture due to zoom recording glitch (i)
Prof. Anant Sahai
Today: Finish Uppertriangularization stor: eigenvalues Understand consequences for stability
symmetan manx Case
Recall: $\quad \widetilde{A}=U^{\top} A \cup$ where $U^{\top} U=I$ since U ha, ${ }^{\text {n or thonormel columns }}$

These are the eigenvalues of A.
BIBO Stability via Upper-triangularization

Claim: This system is BIBO stable if all the eigenvalues of A have $|\lambda|<1$.
Already proven this if A were diagonalizable. $\in A$ little unsatifsing We assume we can uppertriangularize by U. because we had a V^{-1} showing up in our bounding.

$$
\begin{aligned}
& \overrightarrow{\widetilde{x}}[i+1]=\tilde{A} \overrightarrow{\tilde{x}}[i]+\underbrace{>}_{\text {Is this bounded }^{U^{\top} \vec{w}[i]}} \\
& \text { Yes since } \\
& \left\|U^{\top} \vec{\omega}\right\|^{2}=\left(U^{\top} \vec{\omega}\right)^{\top}\left(U^{\top} \vec{\omega}\right) \\
& =\vec{\omega}^{\top} U U^{\top} \vec{\omega} \\
& \text { Col } \vec{v}[i]=U^{\top} \vec{w}[i] \quad \text { But } U^{\top}=U^{-1} \text { and so } U U^{\top}=I \\
& \text { and we know }\|\vec{v}[i]\| \leq \epsilon \\
& =\vec{\omega}^{+} \vec{\omega} \\
& =\|\vec{w}\|^{2}
\end{aligned}
$$

Use the philosophy of strong induction (done backwards)

Start with the last row.

$$
\tilde{x}_{n}[i+1]=\lambda_{n} \tilde{x}_{n}[i]+\underbrace{v_{n}[i]}_{\text {Bounded }}\left|\lambda_{n}\right|<1)
$$

\Rightarrow This is BIBO stable.
\exists constant K_{n} s.t. $\left|\tilde{x}_{n}[i]\right| \leq K_{n} \cdot \epsilon$
In particular $K_{n}=\frac{1}{1-\left|\lambda_{n}\right|}$
Base case for induction is now dons.
Next row up.

$$
\tilde{x}_{n-1}[i+1]=\lambda_{n-1} \tilde{x}_{n-1}[i]+\underbrace{\beta_{n-1, n} \tilde{x}_{n}[i]+v_{n-1}[i]}_{\text {is this bounded?? }}
$$

We know $\left|\lambda_{n-1}\right|<1$

$$
\begin{aligned}
&\left|\beta_{n-1, n} \tilde{x}_{n}[i]+v_{n-1}[i]\right| \leq\left|\beta_{n-1, n}\right| \cdot\left|\tilde{x}_{n}[i]\right|+\left|v_{n-1}(i)\right| \\
& \leq\left|\beta_{n-1, n}\right| \cdot k_{n} \cdot \epsilon+\epsilon \\
&=\left(\left|\beta_{n-1, n}\right| \cdot k_{n}+1\right) \epsilon \\
& \Longrightarrow \exists k_{n-1}
\end{aligned}
$$

In Particular $\quad K_{n-1}=\left(\frac{1}{1-\mid \lambda_{n-1}}\right)\left(\left(\left|\beta_{n-1, n}\right| \cdot K_{n}+1\right)\right)$

Normal "Simple" Seduction $\rrbracket \square \square$

1) First domino falls
2) if $k^{\text {th }}$ domino $f-l l l$, heat one $(k+t)$ also. Polls
$(1)+(2) \Longrightarrow$ all dominoes fall.
Strong Induction
(i) First domino fulls
(2) If all of the fiat k dominoes, $f=l l,(k, 1)^{4}$ dan
$(1)+(21) \Rightarrow$ all dominoes fall.
(2') equivalent statement:
Assume $\forall k$ in $l+1, l+2, \ldots, n$

$$
\text { we know } \exists K_{k} \text { st. }\left|\tilde{x}_{k}(i)\right| \leq K_{k} \cdot \epsilon
$$

Want to show $\exists k_{l}$ st. $\left|\tilde{x}_{l}[i]\right| \leq K_{l} \cdot \epsilon$

$$
\begin{aligned}
& \tilde{x}_{l}[i+1]=\lambda_{l} \tilde{x}_{l}[i]+\underbrace{\left(\sum_{k=l+1}^{n} \beta_{l}, k \tilde{x}_{k}[i]\right)+v_{l}[i]}_{\text {Is this bounded? }} \\
& \text { Know }\left|\lambda_{l}\right|<1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\left|\left(\sum_{k=l+1}^{n} \beta_{l, k} \tilde{x}_{k}[i]\right)+v_{l}[i]\right| & \left.\leq \sum_{k=l+1}^{n}\left|\beta_{l, k}\right| \mid \tilde{x}_{k} c_{i j}\right)+\left|v_{l}[i]\right| \\
& \leq \sum_{k=l+1}^{n}\left|\beta_{l, k}\right| \cdot K_{k} \epsilon+\epsilon \\
& \leq\left(\left(\sum_{k=l+1}^{n}\left|\beta_{l, k}\right| \cdot K_{k}\right)+1\right) \cdot \epsilon
\end{aligned} \\
& \Rightarrow \quad \exists K_{l} \text { sit }\left|\tilde{x}_{l}[i]\right| \leq K_{l} \cdot \epsilon \\
& \hline \text { in particular } K_{l}=\left(\frac{1}{1-\left|\lambda_{l}\right|}\right)\left(\left(\sum_{k=l+1}^{n}\left|\beta_{l, k}\right| \cdot K_{k}\right)+1\right)
\end{aligned}
$$

This proves that $\exists K_{k} \forall k$ in $1,2, \ldots, n$

$$
\Longrightarrow \exists K \quad \text { st. }\|\vec{x}[i]\| \leq K \cdot \epsilon
$$

So:

This proves that having all eigenvalues $\left|\lambda_{i}\right|<1 \Rightarrow B(B)$
Technically, we ours know that Upper-triangulniectan works when all the eigenvalues are real.

But there's a natural generalization to complex case.
One more question: What do we kurw chant the Bi,j? Could they be really huge??

$$
\tilde{A}=U^{\top} A U
$$

can entries of \tilde{A} become huss?

$$
A=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right]
$$

First step: Understand $U^{\top} A=\left[\begin{array}{llll}U^{\sigma} \vec{a}_{1} & U^{\sigma} \vec{a}_{2} & \ldots & U^{\sigma} \vec{a}_{n}\end{array}\right]$

Consider $\left\|U^{\top} \vec{a}_{i}\right\|^{2}=\vec{a}_{i}^{\top} \cup U^{\top} \vec{a}_{i}=\vec{a}_{i}^{\top} I \vec{a}_{i}$

$$
\begin{aligned}
& =\vec{a}_{i}^{\top} \overrightarrow{\vec{a}_{i}^{\prime}} \\
& =\| \vec{a}_{j=1}^{\prime} \\
& =\sum_{j=1}^{n} a_{j i}^{2}
\end{aligned}
$$

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left(U^{\top} A\right)_{j, i}\right)^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j, j}^{2}
$$

Definition: The Frobenius Norm it a mature A is $\|A\|_{F}$ and defined by $\|A\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j, j}^{F}$
We just proved: $\|\cup A\|\left\|_{F}=\right\| A \|_{F}$

$$
\text { if } U^{\sigma} U=I
$$

From the definition: $\left\|A^{\top}\right\|_{F}=\|A\|$

$$
\begin{aligned}
\|\tilde{A}\|_{F}=\left\|U^{\top} A U\right\|_{F}=\|A U\| & =\left\|U^{\top} A^{\top}\right\|_{F} \\
\text { since } U U^{T}=I & =\left\|A^{\top}\right\|_{F} \\
& =\|A\|_{F}
\end{aligned}
$$

$\Longrightarrow \tilde{A}$ is no bisser then A.
\Rightarrow The $\beta_{i j}$ areen't hare unless A war have.
The stole of ow argument is useful beyond just B1BO othils
So the HW has you wins it to solve differential equations.
Key: Upper-triangulnization tums a vector/matrix problem inter a cascade of scalar pubbems.ths allows counterpart, of beck-subationdion do solve.

