16 B Prof. Anant Salas
Today: Finish symmedri: matrix case
Minimum Eves Contal
\rightarrow Solving $C \vec{u}=d$ when C is wide.
Build inst : SUD

Discrete model: $\vec{x}[i+1]=A \vec{x}[i]+B \vec{u}[i]+\vec{\omega}[i]$
Story sofar:
(1) Can use data to learn the system model using least syn
(2) To achieve our goals using this model, we need to:
(A) Make a plan for condors $\vec{u}[i]$ that achieve our goa
(B) Understand how to reliably execute that plan interactively in the face of disturbance:.

Guess/Hope: If S is a symmetric real matrix, then all of its eigenvalues λ are purely real.

Symmatr.: : $S=S^{\top}$
What do we know?

$$
S=S^{\top}
$$

If $\lambda=\bar{\lambda}$, then λ is Pred.
$z+\bar{z}$ is real
$z \bar{z}=|z|^{2}$ is real.
$\int \vec{v}=\lambda \vec{v}$ if λ is an eigenulue and \vec{v} is the corresponding cisunetom.
WLO6: Choose \vec{v} to hare unit norw $\|\vec{v}\|=1$

Asides Youcan brat-force the prof for 2×2 symmetric matrices.

$$
S=\left[\begin{array}{ll}
\alpha & \beta \\
\beta & \gamma
\end{array}\right] \leftarrow \underline{E_{x e-c i s e}}
$$

$$
\begin{aligned}
& S \vec{v}=\lambda \vec{v} \Rightarrow \vec{v}^{\top} S^{\top} \\
& \vec{v}^{\top} \frac{\nu}{S}=\lambda \vec{v}^{\top} \\
&
\end{aligned}
$$

$$
\overline{(S \vec{v})}=\bar{S} \overrightarrow{\vec{v}}=\overline{(\lambda \vec{v})}
$$

$$
S^{\prime \prime} \overline{\vec{v}}=\bar{\lambda} \overline{\vec{v}}
$$

We just learned that Er real matrices, eigeacalus 8 eiscaveatos conn in comitank pals.

Want to isolate λ somehow. \mid know $\vec{v}^{\top} S=\lambda \vec{v}^{\top}$
Why is $\begin{aligned} \vec{v}^{\top} \vec{v} \text { not necessarily), }\|\vec{v}\|^{2} \text { ? } \quad \text { and so } \vec{v}^{\top} S(\vec{v} & =\lambda \vec{v}^{\top} \vec{v} \\ x & =\lambda \cdot \| \vec{v} \vec{\theta}^{2}\end{aligned}$

$$
\sum_{i=1}^{n^{1}} v_{i} \cdot v_{i} \neq \sum_{i=1}^{n}\left|v_{i}\right|^{2} \quad \text { if } v_{i} \text { were complex. }
$$

Second try: Consider $\vec{v}^{\top} S \overline{\vec{v}}=\lambda \vec{v}^{\top} \vec{v}$

$$
\begin{aligned}
\vec{v}^{\sigma} \vec{v}=\sum_{i=1}^{n} v_{i} \bar{v}_{i}=\sum_{i=1}^{n}\left|v_{i}\right|^{2} & =\lambda 川 \vec{v} \|^{2} \\
& =\lambda
\end{aligned}
$$

Sugsesds look ins at $\vec{v}^{\top}(S \overline{\vec{v}})$ alternadiuly.

$$
\begin{aligned}
\stackrel{\rightharpoonup}{v}^{\prime} \bar{\lambda} \overline{\vec{v}} & =\bar{\lambda} \cdot \vec{v}^{\top} \overline{\vec{v}} \\
& =\bar{\lambda} \cdot\|\vec{v}\|^{2}=\bar{\lambda}
\end{aligned}
$$

1 have shown $\lambda=\vec{v}^{\top} S \overline{\vec{v}}=\bar{\lambda}$
S, λ is purely real.
Spectral Theorem $E_{\text {From "Spectrum" } "=\text { Rainbow. }}$.

If S is a ssmmatrue real matrix, then it has a full complement of eigenuecturs that one orthogonal and purely real that correspond to real eigenucluas $\lambda_{1}, \ldots, \lambda_{n}$.

$$
S=\sqrt{ } \quad V^{J} \text { when } \Omega=\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right]
$$

where U is an orthonormal manx

Given any, ral vecto- $\vec{x}=\alpha_{1} \vec{v}_{1}+\alpha_{1} \vec{v}_{2}+\ldots+\alpha_{n} \vec{v}_{n}$
whem $\alpha_{i}=\vec{v}_{i}^{\top} \vec{x}$

$$
\begin{aligned}
\left(S \vec{x}=\sum_{i=1}^{n} \alpha_{i} S \vec{v}_{i}\right. & =\sum_{i=1}^{n} \alpha_{i} \lambda_{i} \vec{v}_{i} \\
& =\sum_{i=1}^{n} \lambda_{i} \vec{v}_{i} \alpha_{i} \\
& =\left(\sum_{i=1}^{n} \lambda_{i} \vec{v}_{i} \vec{v}_{i}^{\top}\right) \vec{x}
\end{aligned}
$$

For ssmmatrin real matrice) $S=\sum_{i=1}^{n} \lambda_{i} \underbrace{1}_{\vec{v}_{i} \vec{x}_{i}^{\top}}$ outer product
Give, an $n \times n$

$$
\vec{x}[i \alpha]=A \vec{x}[i]+\vec{b} u[i]
$$

stant at $\vec{x}[0]=\vec{s}$
Want to get to a destination in T tive steges.

$$
\vec{x}[T]=\vec{g}
$$

What contrals $u[0], w[1], \ldots, u[T-1]$ shold we use?

$$
\begin{aligned}
& \vec{x}[T]=A^{T} \vec{x}[0]+A^{T-1} \vec{b} u[0]+A^{T-2} \vec{b} v[B+\cdots+A b u[T-2] \\
& \sigma \vec{b} \cup[T-1] \\
& \underbrace{\left[\begin{array}{llll}
\vec{b} & A \vec{b} & \cdots & A^{T-1} \vec{b}
\end{array}\right]}_{C}\left[\begin{array}{c}
u[T-1] \\
\omega[T-2] \\
\vdots \\
\vdots \\
\omega[0]
\end{array}\right]=\underbrace{\underbrace{}_{a}-A^{\top} \vec{s}}_{\vec{g}}
\end{aligned}
$$

Want to solve $C \vec{u}=\vec{d}$ for \vec{u}

Typical Problem: Infinite, mans solutions. which one do we want?

Principle of "being, lay": Pick th lowest ness solution.
\Longrightarrow Minimum ewers condor.
Want

$$
\begin{aligned}
& \arg \min \|\vec{u}\|^{2} \\
& \vec{u} \in \mathbb{R}^{T} \\
& \text { st. } C \vec{u}=\vec{d}
\end{aligned}
$$

How to solve? ??
a) Invoke Calculus. Need Moth 53

$$
\operatorname{argmin}\|\vec{d}-A \vec{a}\|^{2}
$$

$$
\begin{aligned}
& \text { Have a set of } n \text { constraints } \\
& \Rightarrow \text { Lagrande multipliers, etc... }
\end{aligned}
$$

$$
\vec{u} \in \mathbb{R}^{T}
$$

$$
\xlongequal{\Rightarrow} \text { lagrange mutplexes, etc- }
$$

b) Think about the geometry \& pick the right basis.

Stat Thinking Suppose $\vec{u}_{\text {s. }}$ solved $C \vec{u}_{\text {sol }}=\vec{d}$ know C is wide \Rightarrow It hor a bis nullspare.

$$
\text { writs: } \vec{u}_{\text {sol }}=\vec{u}_{n}+\vec{u}_{0} \quad \vec{u}_{0} \perp \vec{u}_{n} .
$$

By Pytheoures: $\left\|\vec{u}_{y_{0}}\right\|^{2}=\left\|\vec{u}_{r}\right\|^{2}+\left\|\vec{u}_{0}\right\|^{2}$

$$
\begin{aligned}
& C \vec{u}_{s \rightarrow 1}=\vec{d} \\
& C\left(\vec{u}_{n}^{\prime}+\vec{u}_{0}\right)=\overrightarrow{0}+C \vec{u}_{0}
\end{aligned} \quad C \vec{u}_{0}=\vec{d}
$$

\vec{u}_{0} would be a better solution them $\vec{u}_{\text {sal }}$.
\Longrightarrow Want is a \vec{u} that hear no component
in the nulggen+C.

We wish we had a basis where the nullsface at C was clears visible.

Might as well wish for orthonurmality of the basis ta
Imagine it we had such an orthenomel basis V.
First n columns of V are Not in He nullspae ot C Last $t-n$ " " " are in the aullspae od C.

Work in these nicer coordinates,

$$
\begin{aligned}
& \overrightarrow{\vec{u}}=V^{\top} \vec{u} \quad \vec{u}=V \vec{u} \\
& \text { coodnts } \text { - ocijoul basis. } \\
& \text { in } \\
& \begin{array}{l}
\text { nice } \\
\text { bess }
\end{array} \\
& C \vec{u}=\square \stackrel{\widetilde{u}}{ } \\
& \left.=\begin{array}{c}
C \\
J
\end{array}\right]\left[\begin{array}{ll}
\dot{\widetilde{u}} \\
V_{1} & v_{2} \\
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\|\tilde{u}\|^{2}=\left\|\tilde{u}_{o p p}\right\|^{2}+\| \tilde{u}_{b \phi}\right)^{2}
\end{aligned}
$$

\Rightarrow Set $\tilde{u}_{\text {bot }}=0$ and solve for $\tilde{u}_{\text {top }}$.

How can I find an onthormal basis
s.d Nullspace of C is spanned bs the lad basis elementres

Can we use the spectral theorem?
I would need a symmetric madura S with the same nillspu-

$$
=7 C
$$

If $S=? \cdot C$ thin $\bar{u} \in N_{n} \|_{s}$ cate () $S_{\bar{u}}=0$

$$
\begin{aligned}
? C & =(? C)^{\top} \\
& =C^{\sigma} ?
\end{aligned}
$$

$$
\text { Try } S=C^{T} C
$$

Does $C^{\top} C$ have the same nailspace as C ?

$$
\vec{u} \in \operatorname{Nulligan}(c) \Longrightarrow \vec{u} \in N \|_{\text {sac }}(S)
$$

Need $\vec{u} \in \operatorname{Nall}_{\text {sou }}(S) \Rightarrow \vec{u} \in \operatorname{Na} \|_{\text {grace }}(C)$

$$
\begin{aligned}
S \vec{u}=\overrightarrow{0} & \Rightarrow C^{\top} C \vec{u}=\overrightarrow{0} \\
& \Rightarrow \vec{u}^{\top} C^{\top} C \vec{u}=0
\end{aligned}
$$

$$
\begin{aligned}
& =\left((\vec{u})^{\top}((\vec{u})=0\right. \\
& =\|(\vec{u})\|^{2}=0 \\
& =C \vec{u}=\overrightarrow{0}
\end{aligned}
$$

So $S E C^{\top} C$ work!

