16B Prof. Saki
Today: SUD (by finishing "Wide Egndtan" \& Miner- Nomen Stool)

$$
[\overrightarrow{\vec{u}}]=[\vec{\tau}]\}^{n}
$$

$$
\vec{u} \in \mathbb{R}^{h}
$$

s.). $C \vec{u}=\vec{d}$

Imasine it we had such an onthenount basis V.
First n columns of V are Not is He nellspew of C Last $l-n$ " " ${ }^{24}$ are in the mullspee of C.

Work in these nicer coordinates,

$$
\begin{aligned}
& \|\tilde{u}\|^{2}=\left\|\tilde{u}_{\text {opp }}\right\|^{2}+\left\|\tilde{u}_{b b}\right\|^{2}
\end{aligned}
$$

\Rightarrow Set $\tilde{u}_{\text {bot }}=\overrightarrow{0}$ and solve for $\tilde{u}_{\text {sop }}$.

$$
v\left\{\left[C v_{1}\right) \overrightarrow{\vec{u}}_{f+p}=\vec{d}\right.
$$

D lavent $C V_{1}$ to solve.
We can invoke the spectral the sem for real sym. matrices on the matrix $S=C^{\top} C \leftarrow$ hor the same nullppecenC $V=$ the onthonarmed basis of the eigunecther of S.
Consider \vec{v}_{i} in $V=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{e}\end{array}\right]$

$$
\begin{aligned}
& S \vec{v}_{i}=\lambda_{i} \vec{v}_{i} \quad \Rightarrow \quad C^{\top} C \vec{v}_{i}=\lambda_{i} \vec{v}_{i} \\
& \text { so } \vec{v}_{i}^{\top} C^{\top} C \vec{v}_{i}=\lambda_{i} \vec{v}_{i}^{\top} \vec{v}_{i} \\
&\left.\left(C \vec{v}_{i}\right)^{\top}\left(C \vec{v}_{i}\right)=\lambda_{i} \cdot \| \vec{v}_{i}\right)^{2}=\lambda_{i} \\
&\left.\| C^{\prime \prime} \vec{v}_{i}\right)^{2}
\end{aligned}
$$

$$
\Rightarrow \lambda_{i}=\|\left(\vec{v}_{i} \|^{2} \geq 0\right.
$$

Learned Matrices of the form $C^{\top} C$ have non-negatien eiscantuss.
Arrange $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{e}$ s. that

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0=\lambda_{n+1}=\lambda_{n+2}=\cdots=\lambda_{e}
$$

$$
C V_{1}=\left[\begin{array}{llll}
C \vec{v}_{1} & C \vec{v}_{2} & \cdots & C \vec{v}_{n}
\end{array}\right]
$$

$\left\|k_{n \cdot v}\right\| C \vec{v}_{i} \|^{2}=\lambda_{i} \quad$ Let $\quad \vec{w}_{i}=\frac{C \vec{v}_{i}}{\sqrt{\lambda_{i}}} \quad$ So $\left\|\vec{w}_{i}\right\|=2$
Than $C V_{1}=\left[\begin{array}{lllll}\sqrt{\lambda_{1}} \cdot \overrightarrow{w_{1}} & \sqrt{\lambda_{1}} \cdot \vec{w}_{2} \ldots & \sqrt{\lambda_{n}} \cdot \vec{w}_{n}\end{array}\right]$
For convenience: $\quad \sigma_{i}=\sqrt{\lambda i}$ so $C V_{1}=\left[\sigma_{1} \vec{w}_{1} \sigma_{2} \bar{\omega}_{2} \ldots \sigma_{n} \vec{w}_{n}\right]$
Out of wild \& unrefintre hope, we congute $\left\langle\vec{w}_{i}, \vec{w}_{i}\right\rangle$ (abs. Laziness: can we avoid inverts, a motrari)

$$
\begin{aligned}
\left\langle\vec{w}_{i}, \vec{w}_{j}\right\rangle=\vec{w}_{j}^{\top} \vec{w}_{i} & =\left(\frac{C \vec{v}_{j}}{\sigma_{j}}\right)^{\top} \frac{C \vec{v}_{i}}{\sigma_{i}} \\
& =\frac{\vec{v}_{j}^{\top} C^{\top} C \overrightarrow{v_{i}}}{\sigma_{j} \cdot \sigma_{i}} \sigma_{i}^{2} \\
& =\frac{\vec{v}_{j}^{\top} \cdot \lambda_{i} \cdot \vec{v}_{i}}{\sigma_{j} \sigma_{i}}=\frac{\sigma_{i}}{\sigma_{j}} \vec{v}_{j}^{\top} \vec{v}_{i} \\
& =0 \quad \frac{\text { Amazing Luck! }}{\text { They an orthos,mi to eat. the! ! }}
\end{aligned}
$$

This means $C V_{1}=\left[\sigma_{1} \vec{\omega}_{1} \cdots \sigma_{n} \vec{w}_{n}\right]$

$$
=W\left[\begin{array}{cc}
\sigma_{1} & 0 \\
\sigma_{1} & 0 \\
0^{2} & -\sigma_{n}
\end{array}\right] \quad \text { Call } \Sigma_{c}=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0^{-} & \sigma_{n}
\end{array}\right]
$$

Whan $\omega=\left[\begin{array}{llll}\vec{\omega}_{1} & \vec{\omega}_{2} & \ldots & \vec{\omega}_{n}\end{array}\right]$
is onthonormel and squme

$$
\begin{aligned}
\left(\left(v_{1}\right)^{-1}=\left(\omega \Sigma_{c}\right)^{-1}\right. & =\sum_{c}^{-1} \omega^{-1} \\
& =\sum_{c}^{-1} \omega^{\top} \\
& =\left[\begin{array}{cc}
1 / \sigma_{1} & \sigma^{1 / \sigma_{2}} \\
0^{-} & -\frac{1}{\sigma_{n}}
\end{array}\right] \omega^{\top}
\end{aligned}
$$

So $\vec{u}_{\infty+1}=\sum_{c}^{-1} \omega^{\top} \vec{d}$
So $\tilde{u}_{i}=\frac{1}{\sigma_{i}} \vec{\omega}_{i}^{\top} \vec{d}$
Reall $\tilde{u}_{\text {botit. }}=\overrightarrow{0}$
So $\vec{u}=V_{1} \overrightarrow{\tilde{u}}_{+\circ \varphi}=\sum_{i=1}^{n} \vec{v}_{i} \cdot \frac{1}{\sigma_{i}} \vec{\omega}_{i}^{\top} \vec{d}$
We have foud the miriman narm s.lutri..!
Step boak and reflect.
We know $\frac{n V_{1}}{n}=\omega^{L^{n+m}} \sum_{c}^{c^{n+n}}$
What about $C V=C\left[V_{1} V_{2}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
C v_{1} & C v_{L}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\omega \Sigma_{c} & 0
\end{array}\right] \\
& =W\left[\begin{array}{ll}
\Sigma_{c} & 0
\end{array}\right]
\end{aligned}
$$

Let $\mathcal{E}=\underbrace{\left[\sum_{c} 0\right.}_{e} 0]\} n \quad \sum$ is the same shari $\sim C$

$$
C V=\omega \sum \quad B-\delta V \text { is inverdile. }
$$

s. $C=\omega \sum V^{\top}$
σ. is the it sing, -ar value.

This i, the Full SUD.
Sing ter value Decomposition
To understand better, consider a generic $\vec{v}=\sum_{i=1}^{d} \alpha_{i} \vec{v}_{i}$
when $\alpha_{i}=\vec{v}_{i}^{\top} \vec{u}$

$$
\begin{aligned}
& C \vec{u}=\sum_{i=1}^{l} \alpha_{i} C \vec{v}_{i}=\sum_{i=1}^{n} \alpha_{i} \sigma_{i} \vec{\omega}_{i}+\sum_{i=n+1 i}^{l} \alpha_{i} \overrightarrow{\vec{z}_{i}} \overrightarrow{0} \\
& =\sum_{i=1}^{n} \sigma_{i} \vec{\omega}_{i} \alpha_{i} \\
& =\sum_{i=1}^{n} \sigma_{i} \vec{w}_{i} \vec{v}_{i}^{\top} \vec{u} \\
& =\left(\sum_{i=1}^{n} \sigma_{i} \vec{\omega}_{i} \vec{v}_{i}^{\top}\right) \vec{u}
\end{aligned}
$$

This is called the outer-prodact form of the SUD.

What were our assumptions? Do we actulb need tlem?
We assumed contrability in our orisinl problem.
\Rightarrow C has a range (ie. Col Spare) tut in n-dimenmal

What it this wasn't trae. S-ppose it was ouls r-dimesiment
We would still have $l \times l V$ orthonocmel.
(Spectul Tham. - $C^{\sigma} C$)
We would ouls ged r nonzers eijenulas $\lambda_{1}, \ldots, \lambda_{-}$

$$
\Longrightarrow r \text { nenzero } \sigma_{i}
$$

Onls consequene: $\sqrt{C=\sum_{i=1}^{r} \sigma_{i}\left(\vec{w}_{i} \vec{v}_{i}^{\top}\right) \text { Complidhly }}$
Challease: Cau we sed - f-ll SUD?
obstacle: We ouls have r orthonuml $\vec{w}_{1}, \ldots, \vec{w}_{m}$.
Ned n arthun..nl veccurs 2 Ean ω.
\Longrightarrow Can ure GS. trick to set n ot thm. S. We have $\omega=\left[\vec{w}_{1}, \ldots, \vec{u}_{r}, \vec{w}_{-1+1}, \vec{w}_{n}\right]$

The Full SVD is geveralfor red matures.
(Can extend to complex Her)

This har an interpretction.
V^{σ} is an orthoumel mutnx $=1 t$ is like on nosutin / reflection.
W is ac orthionl matrix $=$
$\sum:$ scales axes. \& drips some of then at thend.
Ever, Matrix C is just: 1) Rotate/Refleat
2) Scalc along axes
3) Rotuch (Ruthest.

Like "Polar Coordinats" for Matrikes. The ori ave like the messudete
C-mpact form of SVD. (Like outer-pendet fom,

This i, the compect forn of th sub.
Whs ir thin trun? $C \vec{w}=\left[\vec{w}_{1}, \ldots, \vec{w}_{r}\right]\left[\begin{array}{ll}\sigma_{1}, & -\sigma_{r}\end{array}\right]\left[\begin{array}{c}\vec{v}_{i}^{r} \\ \vdots \\ \vdots \\ \vdots \\ \vec{v}_{r}^{\top} \vec{u}\end{array}\right]$

$$
=\left[\begin{array}{llll}
\sigma_{1}, \vec{\omega}_{1} & \cdots \sigma_{r} & \vec{w}_{2}
\end{array}\right]\left[\begin{array}{l}
\vdots \\
\vdots \\
\vdots
\end{array}\right] d
$$

$$
=\sum_{i=1}^{r} \sigma_{i} \vec{w}_{i} \vec{v}_{i}^{\top} \vec{u}
$$

N outer Pedant Gam.
This shows the validity of compact SUD.

What about tall matrices?

Comment on notation.
Traditional Nature
Nampa uses then.

$$
\begin{array}{rlr}
A & =\bigcup^{\sum} V^{\sigma} \quad \text { Fall SUD } \\
& =\sum_{i=1}^{n} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top} & \text { onderpondad } \\
& =V_{c} \sum_{\substack{c}} V_{c}^{\top} & \text { compact Pom }
\end{array}
$$

Comment on computation How big of a matrix do wi need to compare eiscnucados for?

$$
\text { If } \begin{aligned}
A A^{T} & =U \Sigma V^{\top} V \Sigma^{T} U \\
& =U \underbrace{\sum \Sigma^{\sigma}}_{\text {dias owl }} U^{T}
\end{aligned}
$$

If you take eigenvector of $A A^{\top}$, we can sit a set of $\overrightarrow{u_{i}}$

$$
\begin{aligned}
& \{A\} l \quad \text { where } l \geq m \quad \text { This is now wide. } \\
& =A=\left(A^{\top}\right)^{\top} \quad \varepsilon^{\sigma} \text { hos, ham } \quad \text { sim } A \\
& =\left(\omega \sum_{1} V^{\sigma}\right)^{T}=V \Sigma^{\mathcal{L}} \omega^{T} \\
& \text { has som Tfillsud } \\
& \begin{array}{l}
\text { has them }-\infty A^{\sigma} \\
\text { s. }
\end{array}
\end{aligned}
$$

\Rightarrow We can get \vec{v}_{i} from these. (Think tanjpex) S. we can choose the smetter d $A^{\sigma} A$ or $A A^{T}$. See discoustime. What does the SUD reveal about matrices?

$$
A: m\left\{\tilde{m}^{\tilde{m}}\right]: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

Lef r be th rank of A.
Sina $A=\sum_{i=1}^{n} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top} \quad r=\operatorname{dim}(. \mid \operatorname{s/an}(A)$

$$
A^{T}=\sum_{i=1}^{r} \sigma_{i} \vec{v}_{i} \vec{u}_{i}^{\top}
$$

In fart $\vec{u}_{1}, \ldots, \vec{u}_{r}$ is a basis F.r $\cos \operatorname{sen}(A)$

$$
\begin{aligned}
r & =\operatorname{dim}\left(\operatorname{lo} \operatorname{rram}\left(A^{\top}\right)\right. \\
& =\operatorname{dim} \operatorname{Row} \operatorname{span}(A)
\end{aligned}
$$

Wr lenar $V_{2}=\left[\vec{v}_{r+1} \ldots, \vec{v}_{n}\right]$

$$
\begin{aligned}
& \text { is a basir for Nullspae ôt } A \operatorname{dim}(\text { Nullprace }(A))=n-r \\
& \operatorname{dim}\left(\operatorname{Nullpac}\left(\overline{A^{T}}\right)\right)=m-n .
\end{aligned}
$$

$V_{1}=\left[\vec{v}_{1}, \ldots, \vec{v}_{r}\right]$ spens the $C-1$ Spere ($\left.A^{\sigma}\right)$ ie. a basis for the row of A.

Nullspau (A) \perp Colspace (A^{\top})
Nullspae (A^{\top}) \perp ColSpace (A)

