16B Pr.f Anant Sahai
Today: Finish Suo
Dimensionelity Reduction \& PCA
Using this for clasification
3 forms of SUD of $m\left\{\tilde{\hat{A}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right.$

$$
\text { e.s. } \sum=\left[\begin{array}{ccc}
\sigma_{1} & 0 \\
0 & 0 & \sigma_{n}
\end{array} 0\right] \text { or } \sum=\left[\begin{array}{lll}
\sigma_{1} & 0
\end{array}\right] \xrightarrow{ } \quad \rightarrow \text { Busis for }
$$

2. Outer-product form $A=\sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top}$
3. Compact form $A=\tilde{U}_{i} \cdot\left\{\tilde{\Sigma}_{c} V_{1}^{\top}\right\}-$
(2) II Design Contest
(3) Anverer Esta-Gradit Opp coming...

$$
\begin{aligned}
& \text { e.s. } \sum=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & 0 \\
0 & \sigma_{1} \\
\operatorname{con} & A=\sum_{i=1}^{n} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top}
\end{array}\right]
\end{aligned}
$$

Come balk to the bi, prism Get latention

For simplicity: Suppose that in the perron's brain, there one differnat neurons that correspond to different goods

r Pidirins up sisuds from multiple nenorons. Picks up a wave form

Need to pull sport the different newtons signals.
We don't know - \# of fidel neurons being pricked up. (How many are in rave)

- What exactly the fris pattom/spike sind for each of the newono lots ike.
\Rightarrow Assume that the spike signals from diff nemens look different as waveforms.

Let \vec{r}_{j} be the $j^{\text {th }}$ recoded tree.
Have a block of recorded data.
If we assume that then are actully k nearons in range and each has a specific signature waveform \vec{s};.
Then $\quad \vec{r}_{j}=\sum_{i=1}^{k} \omega_{i, j} \cdot \vec{r}_{i}$

$$
l\{\overbrace{A}^{n}=\ell\{\overbrace{\sum_{s_{1}, s_{i}-s_{k}}^{k}}^{r_{j}^{\prime \prime}} \overbrace{\omega}^{n}\} k
$$

$$
\text { sanies } \vec{r} \text { in a } \operatorname{liment}
$$

$$
\int_{o \in\{ }^{c o s i n}\{\vec{j} ;\}
$$

If 1 took the SUD of $A, A=\sum_{i=1}^{k} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top}$

$$
\text { In particiolo, id know } k \text {. }
$$

Reality Check: In many cares, the sing wan value look lithe

$$
\sigma_{1}=100 \quad \sigma_{2}=90 \quad \sigma_{3}=50 \quad \sigma_{4}=2 \quad \sigma_{5}=1.1 \sigma_{6}=0.3
$$

You wont get zeros.

$$
\sigma_{R Z}=0.09
$$

Bat yow will set small numbers.

$$
\begin{aligned}
& \sigma_{18}=0.001 \\
& \sigma_{19}=0.0001 \\
& \sigma_{2} \cdots .,-8
\end{aligned}
$$

$$
A=100 \cdot \vec{u}_{1} \vec{v}_{1}^{T}+90 \cdot \vec{u}_{2} \vec{v}_{2}^{T}+50 \vec{u}_{2} \vec{v}_{3}^{T}+2 \cdots{ }_{30} \sigma_{30}=10^{-8}
$$

Take the perspective of Tayle-Series (Calculus).. Bode Plots Let', approximate this- Just keep the bis ficus.

$$
\begin{aligned}
& \text { Quick id example. } \\
& A=\left[\begin{array}{llll}
1 & 2 & 4 & 5 \\
2 & 4 & 8 & 10
\end{array}\right] \\
& \left.\operatorname{SUD}(A)=\sqrt{230}\left[\begin{array}{c}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]\left[\frac{1}{\sqrt{44}} \sqrt{\frac{4}{46}} \cdots\right]\right]
\end{aligned}
$$

Appreciate the audacity of what were doing.
Ow A is just a block of data.
Illastradice conceptual example: Movie Ratings.

16-philosophy: Make a model,
Leman the model' from date,
Use the model to cate predictions.
Model for movies: Movie i ha, 4 \# associated to it.

$$
\text { e.s. } a_{\text {; }} \text { Action Score }
$$

bi : Bechtel Score
ci : Comedy Score
di : Dame Score

Modul fo Puople: Pergan j has 4 sensitvitures
α_{j} : sensidurib to aution
$\beta_{j}: \quad 1 \quad-B e h d t$ son
γ_{j} : " ' comeds
六 : -- - Prama.
$\frac{\text { Mode (F- Radion: }}{r_{i}}$

$$
r_{i j}=\alpha_{j} a_{i}+\beta_{j} b_{i}+\gamma_{j} \cdot c_{i}+\delta_{j} \cdot d_{i}
$$

Chellenge: We ouls see rating rij.
Can we learn our model from the date?

$$
m\left\{\tilde{n}^{n}=\vec{a} \vec{\alpha}^{\top}+\vec{b} \vec{\beta}^{r}+\vec{c} \vec{\gamma}^{\top}+\vec{d} \vec{\delta}^{\top}+W\right.
$$

where $\vec{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and simitel, $f, \vec{b}, \vec{c}, \vec{d}$ "disthbai"

$$
\left.x_{n}\right]
$$

\mathbb{R} has rank 4.

Wanted $R=\vec{a} \vec{\alpha}^{\sigma}+\cdots \cdots+\vec{d} \vec{\delta}^{\top}$

Q: D. we now know our model??
A. No. Fundamentally some ambiguity exist.

1) Could say $\vec{a}=\vec{u}_{1}$, then $\vec{a}^{\top}=\sigma, \vec{v}_{1}^{\top}$
or $\vec{a}=\sigma_{1} \vec{u}_{1}$, the $\vec{a}^{\sigma}=\vec{v}_{1}^{\top}$
2) Similarls: We could ham chareen \vec{a}, \vec{b} t be mixtures of $\vec{u}_{1} \& \vec{u}_{2}$.

All we redly know is the we hare a 4-D sclisgee.
Can Modify our model : Each movie has a vector \vec{g}
fo reflect whet is
onsisile Each person has a vector \vec{S} of sensidurides.

$$
r(\vec{g}, \vec{s})=\sum_{k=1}^{4} \sigma_{k} g_{k}^{r} s_{k}^{r^{\text {numb r. }}}
$$

$\mathbb{K}_{\text {Pal }}$ this out instead of
Now our learned model has $g_{i}=\left[\begin{array}{l}\left(\vec{u}_{1}\right)_{i} \\ \left(\vec{u}_{2}\right)_{i} \\ \left(\vec{u}_{3}\right)_{i} \\ \left(\vec{u}_{4}\right)_{i}\end{array}\right]$
Recall \vec{u}^{\prime} 'are m long
\vec{v}; are n long.

$$
\vec{s}_{j}=\left[\begin{array}{c}
\left.\left(\vec{v}_{1}\right)\right)_{j} \\
\left(\vec{v}_{2}\right) j_{1} \\
\left(\vec{v}_{3}\right)_{j} \\
\left(\vec{v}_{4}\right)_{j}
\end{array}\right]
$$

Next time: Using the model to do prediction?

