16 B Prof. Anat Saba,
Today: Finish clessification-inspired optimization stoss Loose ends: Complex liner Product

Recall: Have |bled point: $\left(\vec{x}_{i}, l_{i}\right)$ i=1,..., m where $l_{i}= \pm 1$
where $p_{i}=\vec{\omega}^{\top}\left[\begin{array}{l}1 \\ \vec{x}_{i}\end{array}\right]$ and $c(p, l)=(p-l)^{2}$
HoW 13 due next Fri (Not the, Fo, Hew 14 will release br ewe wed \& Due Led R RR week.

What wat wrons? Least-squas is minimizing $\sum_{i=1}^{m} c\left(p_{i}, l_{i}\right)$

What kist at cost looks like

e.5. exponential. Can we wee a cost $C_{+}(p)=e^{-p}$.

$$
\& \quad C-(p)=e^{+p}
$$

$$
c(p, l)=e^{-l p}
$$

We wand $\quad \underset{\vec{\omega}}{ } \min \sum_{j=1}^{m} \exp \left(-l_{i} \vec{\omega}^{\top}\left[\begin{array}{c}1 \\ \vec{x}_{j}\end{array}\right]\right)$
From now on assume \vec{x}; has $D^{\text {th }}$ comprenend as I

$$
\operatorname{ars}, \min \sum^{m} \exp \left(-l_{i} \vec{x}_{i}^{\top} \vec{\omega}\right)
$$

How do 1 optimin tha??
3 apprather: @ Pratend this is Tocall) around wis and maisase if into keat-squms fore

$$
\left.c(\vec{\omega}) \stackrel{f}{\sim} c\left(\vec{\omega}_{0}\right)+\frac{d}{d \vec{\omega}} c\right]_{\overrightarrow{w_{0}}}\left(\vec{\omega}-\vec{\omega}_{0}\right)+\frac{1}{2}\left(\vec{\omega}-\overrightarrow{\omega_{0}}\right) H_{\omega}(c) \int_{\vec{\omega}_{0}}
$$

(b) Look for a local ${ }^{\text {minimixax }}$ by secing wher the Essctim of nontinar equatios $\frac{\partial}{\partial \vec{\omega}} C(\vec{\omega})=\vec{J}^{\top}$ is solued.
(Use Newaton's Mathad)
(c) Patend it is limem and jos iture \Longrightarrow go down the sipe a little.
SUPER I MPORTANG

Computes com tate deciutros antometiolls, eg. Bytorch - (alio tensorflow, sax, et...)

$$
c(\vec{w}) \approx c\left(\vec{w}_{0}\right)+\frac{d}{d \vec{\omega}} c \int_{\vec{w}_{0}}\left(\vec{w}-\vec{w}_{0}\right)+\frac{1}{2}\left(\vec{w}-\vec{w}^{T}\right)_{\omega}(0) \int\left(\overrightarrow{\omega_{\vec{w}}}\right)
$$

wher $\frac{d}{d \vec{\omega}} c=\left[\begin{array}{llll}\frac{\partial c}{\partial w(0)} & \frac{\partial c}{\partial \omega(T)} & \cdots & \frac{\partial c}{\partial w(1)}\end{array}\right]$

How to minimize something like this) (exploit localls quadrate)

1) Choose some initial $\vec{\omega}_{0}$ (es. $\vec{\omega}_{0}=\overrightarrow{0}$)
set $i=0$
2) Take a local quadrature approximation assad $\vec{\omega}_{i}$
3) Find $\vec{\omega}_{i+1}=$ minimizer of the, quadrate

Set $\vec{\omega}_{i+1}=(1-\eta) \vec{\omega}_{i}+\eta \vec{\omega}_{i+1} \quad$ ot ot \quad t 1 "ext"
4) Sec if "done" ifs. stop
else sots (2).
A) Is the $c(\vec{w})$ not changing bs mach.
A) Is ω_{1+1} veloce to ω_{1} ?
B) Have you run out of dime.

How do minimise thri quadretrel

HopE: Can we just motel deems to leas spumes?
D. we care abound coustuat term d ?

No. 14 doesn't mother for aymin.

Hope $\exists A$ so that

$$
\frac{1}{2} H=A^{\top} A \Rightarrow H=2 A^{\top} A
$$

What do we know?
Least Squares!
$A \vec{w} \approx \vec{y}$
Find \vec{w} that minimise, $\|A \vec{w}-\vec{y}\|^{2}$

$$
\begin{aligned}
\|A \vec{w}-\vec{y}\|^{2}= & \left(\omega^{\sigma} A^{\top}-\vec{y}^{\top}\right)(A \vec{w}-\vec{y}) \\
& =\vec{w}^{\sigma} A^{\top} A \vec{w}-2 \vec{y}^{\sigma} A \vec{w}+\vec{y}^{\top} \vec{y}
\end{aligned}
$$

Solved by $\quad \hat{\vec{\omega}}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{y}$
Also could use SVD
N. 1 worried about invectbiliti,
${ }^{\succ}$ Can threshold to zero very small sing -lar values.
If $A=U_{1} \varepsilon_{c} V_{1}^{\top}$
Then $\left(A^{\top} A\right)^{-1} A^{\top}=V_{1} \Sigma_{c}^{-1} U_{1}^{\top}$

Hope $\exists \vec{y}$ so that $\leftarrow 1$ need A to be invertible.

$$
\vec{b}^{\top}=-2 \vec{y}^{\top} A \quad \vec{y}=-\frac{1}{2} A^{-T} \vec{b}
$$

With thea hopes, 1 will get the sol ton: $\overrightarrow{\vec{\omega}}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{y}$

$$
\begin{aligned}
& =\left(\frac{1}{2} H\right)^{-1}\left(-\frac{1}{2}\right) H^{\top} A^{\top} \vec{b} \\
& =-H^{-1} \vec{b} \\
& =-H^{-1}\left(\frac{d}{d \omega} c\right)^{\top}
\end{aligned}
$$

Still hanging on hope....
Is then an A s.t. $\frac{1}{2} H=A^{\top} A$??
called

$$
\frac{d}{d \vec{w}} c(\vec{w})=\sum_{i=1}^{m} \frac{\partial}{\partial \vec{w}} c_{i}\left(\vec{x}_{i}^{\top} \vec{w}\right)
$$ $\nabla_{\vec{\omega}} c$

$$
=\sum_{i=1}^{m} c_{i}^{\prime}\left(\overrightarrow{\bar{x}}^{\top} \vec{w}\right) \underbrace{\left[x_{i}[0] x_{i}[1] \ldots\right.}_{n} \cdot \underbrace{\left[x_{i}\right]}]
$$

$$
\frac{\partial}{\partial \vec{\omega}}\left[\bar{x}_{i}^{r} \vec{w}\right)=\frac{\partial}{\partial \vec{w}} \sum_{k=0}^{n} x_{i}[k] \omega[k]
$$

$$
=\sum_{i=1}^{m} c_{i}^{\prime}\left(\vec{x}_{i}^{\top} \vec{w}\right) \vec{x}_{i}^{\top}
$$

Notice that if $c_{i}^{\prime \prime}\left(\vec{x}_{i}^{\top} \vec{\omega}_{\dot{i}}\right) \geq 0$, then

$$
\begin{aligned}
& H_{\vec{\omega}} c=\frac{d}{d \vec{\omega}}\left[\frac{d}{d \vec{\omega}} c(\vec{\omega})\right]^{\top} \\
& =\sum_{i=1}^{m} \frac{d}{d \vec{\omega}} c^{\prime}\left(\vec{x}_{,}^{\top} \vec{\omega}\right) \vec{x}_{i} \\
& =\sum_{i=1}^{m} \vec{x}_{i} \frac{d}{d \omega} c^{\prime}\left(\vec{x}_{i}^{\top} \vec{\omega}\right) \quad \text { Bs same losices } \\
& =\sum_{i=1}^{m} \vec{x}_{i} c^{\prime \prime}\left(\vec{x}_{i}^{\top} \vec{\omega}\right) \vec{x}_{i}^{\top} \\
& ?
\end{aligned}
$$

Aside: What an functions whose second derintere is days ≥ 0 called?

Note: e^{x} and e^{-x}
ar bath convex (3)

This is why convexity is s.umthos geepte car cone abound.
See 127 for more....
Left's check to make sure those mike sense.
Let's use squad error : $c_{i}(p)=(l-l i)^{2}$

$$
\begin{aligned}
& c:(p)=2\left(p-l_{i}\right) \\
& c_{i}^{\prime \prime}(\rho)=2 \\
& \frac{1}{2} H=\sum_{i=1}^{m} \vec{x}_{i} \vec{x}_{i}^{\top}=A^{\top} A \text { it } A=\left[\begin{array}{c}
\vec{x}_{1}^{\top} \\
\vdots \\
\vec{x}_{m}^{\top}
\end{array}\right] \\
& \frac{d}{d \vec{\omega}} c=\sum_{i=1}^{m} 2\left(\vec{x}_{i}^{\top} \vec{\omega}-l_{i}\right) \vec{x}_{i}^{\top} \\
& =2(A \vec{\omega}-\vec{l})^{\top} A \\
& \text { Recall: } \\
& \text { In = l cat-qyop publun } \\
& A=\left[\begin{array}{c}
k_{1}^{+} \\
\dot{x} n_{n}^{2}
\end{array}\right] \sin \cdot
\end{aligned}
$$

\| $A \vec{s}-\vec{l} \|^{2}=\sum_{i=1}^{m}\left(\vec{x}_{i} \vec{a}^{-} \overrightarrow{l_{i}}\right)^{2}$
Put eventh d,athen.

$$
\begin{aligned}
& \left\|A\left(\vec{\omega}_{0}+\vec{\delta}_{\omega}\right)-\vec{l}\right\|^{2}=\left(\left(A \vec{\omega}_{0}-\vec{l}\right)+A \vec{\delta} \omega\right)^{\top} \\
& \left(\left(A \vec{\omega}_{0}-\vec{l}\right)+A \vec{\delta} \omega\right) \\
& =\left\|A \vec{\omega}_{2}-\vec{l}\right\|^{2}+\delta \vec{\omega}^{\top} A^{\top} A \delta \vec{\omega} \\
& +2\left(A \vec{\omega}_{0}-\vec{l}\right)^{\top} A \delta \vec{\omega} \\
& \longrightarrow \approx\left\|A \vec{\omega}_{0}-\vec{l}\right\|^{2}+2\left(A \vec{\omega}_{0}-\vec{l}\right)^{\top} A \overrightarrow{\delta \omega}+\overrightarrow{\delta \omega}^{\top} A^{\top} A \vec{\delta} \vec{\sigma}_{\omega}
\end{aligned}
$$

Passes For something actually quederte, the local quadrate -proximation is exact.

Undestonders "transpose trick" ie. Gradrent Descent. Jut expand out to fint derviatie:

Want to minimise or maximise? What direation shund $\overrightarrow{\delta w}$ he?
We know bs Caachs-Schunrt $\mid\langle\vec{a}, \vec{b}\rangle) \leq\|\vec{a}\| \cdot\left\|_{\vec{a}}\right\|$
with equilits onls when $\vec{a}=\propto \vec{b}$ $\vec{b}^{-7} \vec{a}$
So $\quad \overrightarrow{\delta \omega}=\left[\left.\frac{d c}{d \omega^{j}}\right|_{\vec{\omega}}\right]^{\top}$ tha maximimiteces in the chung in c

$$
\left.\overrightarrow{\delta \omega}=-\left[\frac{d c}{d \vec{\omega}}\right)_{\overrightarrow{\log }}\right]_{\text {is th diructires }}^{\sigma} \text { minimizes }
$$

$\nabla_{\vec{\omega}}$ c(B): Gradiut of cort w.r.t. $\vec{\omega}$
For Gradient Descenti $\vec{\omega}_{i+1}=\vec{\omega}_{i}-\eta \nabla_{\vec{\omega}} c\left(\vec{\omega}_{i}\right)$
$\left.\begin{array}{l}\text { For squal } \\ (\text { Least-symas })\end{array} \nabla_{\vec{\omega}} C\left(\vec{\omega}_{i}\right)=\left[\frac{d}{d \vec{\omega}} c(\vec{\omega})\right)_{\vec{\omega}_{i}}\right]^{\top}$

$$
=2 A^{\top}\left(A \vec{w}_{i}-\vec{l}\right)
$$

$$
\vec{\omega}_{i+1}=\vec{\omega}_{i}+\eta \cdot 2 \cdot \hat{A}^{\top}(\underbrace{\bar{l}-A \omega_{i}}_{\text {residual }})
$$

Sounce of A^{T} in Hw Priblen. Remember: η can't be too big.- dynamis go urubble.

For generic losses. $\nabla_{\vec{\omega}} c(\vec{\omega})=\sum_{i=1}^{m} c_{i}^{\prime}\left(\vec{x}_{i}^{\top} \vec{\omega}\right) \vec{x}_{1}$

$$
\vec{w}_{i+1}=\vec{w}_{i}+M A^{\top} \underbrace{\left[\begin{array}{c}
\tilde{d}_{1}^{\prime} \\
-c_{1}^{\prime}\left(\vec{x}_{i}^{\top} \vec{w}_{i}\right) \\
\vdots \\
-C_{m}^{\prime}\left(\vec{x}_{m}^{\tau} \vec{w}_{i}\right)
\end{array}\right]}_{\text {These }} \text { 。 }
$$

There derivatres of the losses thee the place of the residual.

Loose End: When we did cyper-tri-asbluizan, we restrict d to real eigenulas/e'smucitors.
\Rightarrow We need a complex inner-podned.
For real venture $\langle\vec{a}, \vec{b}\rangle=\vec{b}^{\sigma} \vec{a}=\vec{a}^{\top} \vec{b}=\sum_{i=1}^{n} a_{i} b_{i}$
Doesn't work for complex vectors...
Want $\|\vec{a}\|=\sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{2}}=\langle\vec{a}, \vec{a}\rangle$
For complex vectios mokes sense bud squint entries unit give wo masnithle

$$
\begin{aligned}
\langle\vec{a}, \vec{b}\rangle & \stackrel{?}{\vec{b}} \vec{a}=\sum_{i=1}^{n} a_{i} \bar{b}_{i} \\
& \stackrel{?}{=} \vec{a}^{\top} \vec{b}=\sum_{i=1}^{n} \bar{a}_{i} b_{i}
\end{aligned}
$$

We choose this one.

$$
\text { ic. }\langle\vec{a}, \vec{b}\rangle=\vec{b}^{*} \vec{a}
$$

when $\vec{b}^{x}=(\overline{\vec{b}})^{\top}$ culled conjugte transpose.
Next time: finish up complex inner product. (Also discussions next week) \& Review.

