
Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 12: Orthonormalization

1 Repeated System ID
So far when performing system ID, we assumed that we already knew what type of model our system was,
e.g. whether it was a first order, second order, or nth order difference equation. However, this assumption
may not be valid all the time, and so we might not have a good idea of the order of our system. One way
to deal with this is to try fit a first order model, second order model, and so on till an nth order model, and
compare how well the models perform on a test set of data. Let’s consider what must happen for us to do
this.

For this example, we will just consider the case of a scalar state with a scalar input. Then we will have the
following candidate models:

y1[i] = a1y[i− 1] + bu[i− 1] (1)

y2[i] = a2y[i− 2] + a1y[i− 1] + bu[i− 1] (2)
...

yn[i] = any[i− n] + an−1y[i− (n− 1)] + · · ·+ a1y[i− 1] + bu[i− 1] (3)

If we try to do system ID for the first order system (1) with r rows of data, we end up with the following
least square problem:

D1~x1 ≈ ~y (4)
y[0] u[0]
y[1] u[1]
...

...
y[r − 1] u[r − 1]

[
a1
b

]
≈

y[1]
y[2]
...
y[r]

 (5)

Now note that to construct the system ID matrix for the second order system (2) just requires adding another
column to the left of our data matrix. Here, for all negative time i < 0, we assume y[i] = 0.

D2~x2 ≈ ~y (6)
y[−1] y[0] u[0]
y[0] y[1] u[1]
...

...
...

y[r − 2] y[r − 1] u[r − 1]

a2a1
b

 ≈

y[1]
y[2]
...
y[r]

 (7)

This can be repeated, so each next higher order will require 1 more column on the left to the data matrix.
Then, we will need to calculate the least squares solution for each problem, getting

~̂x1 = (D>1 D1)
−1D>1 ~y (8)

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

~̂x2 = (D>2 D2)
−1D>2 ~y (9)

...

~̂xn = (D>nDn)
−1D>n ~y (10)

This could take a lot of time if r and n are very large, especially the matrix inverse operation as it is O(k3)
runtime where k is the number of rows of the matrix. Is there any way we can take advantage of the structure
of our Di matrices (where Di+1 is just 1 more column added to Di) to make this process faster?

It turns out there is, and it relies on a process called Gram-Schmidt orthonormalization, which will be the
focus of this note.

2 Orthogonal Vectors and Projection
Recall from 16A that two vectors ~v, ~w are orthogonal if they are 90◦ apart. Remember that an equivalent
definition is that they are orthogonal if and only if

〈~v, ~w〉 = ~v> ~w = ~w>~v = 0 (11)

Recall that the orthogonal projection of a vector ~y on to any other nonzero vector~b is

~y~b =
~y>~b∥∥∥~b∥∥∥2~b (12)

Also recall that least squares is just an orthogonal projection of a vector ~y onto an entire subspace of vectors
spanned by the columns of A, so

~yA = Ax̂ = A(A>A)−1A>~y (13)

In this section, we will show that if the columns of A are mutually orthogonal to each other, the projection
of ~y onto span(A) is the sum of the projection of ~y onto each column of A individually. Let’s take a look at

the case where we have 2 orthogonal vectors, ~v1 and ~v2, so A =

 | |
~v1 ~v2
| |

.

Let’s first compute the term
(
A>A

)−1
:

A>A =

[
~v>1
~v>2

] | |
~v1 ~v2
| |

 (14)

=

[
~v>1 ~v1 ~v>1 ~v2
~v>2 ~v1 ~v>2 ~v2

]
(15)

=

[
‖~v1‖2 0
0 ‖~v2‖2

]
. (16)

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

We have a diagonal matrix with non-negative diagonal entries and so

(
A>A

)−1
=

 1
‖~v1‖2

0

0 1
‖~v2‖2

 . (17)

Then, substituting this matrix into the original expression, the projection of ~y onto span(A) is

~yA = A
(
A>A

)−1
A>~y (18)

=

 | |
~v1 ~v2
| |

 1
‖~v1‖2

0

0 1
‖~v2‖2

[~v>1
~v>2

]
~y (19)

=

 | |
~v1 ~v2
| |

 1
‖~v1‖2

0

0 1
‖~v2‖2

[~v>1 ~y
~v>2 ~y

]
(20)

=

 | |
~v1 ~v2
| |

 ~v>1 ~y

‖~v1‖2
~v>2 ~y

‖~v2‖2

 (21)

=

(
~v>1 ~y

‖~v1‖2

)
~v1 +

(
~v>2 ~y

‖~v2‖2

)
~v2. (22)

Observe that the first term in the sum above is the projection of ~y onto ~v1 and the second term is the projection
of ~y onto ~v2. Generalizing this pattern, we can guess that the projection of ~y onto span(An) where An has
n mutually orthogonal columns is

~yAn =

(
~v>1 ~y

‖~v1‖2

)
~v1 +

(
~v>2 ~y

‖~v2‖2

)
~v2 + · · ·+

(
~v>n ~y

‖~vn‖2

)
~vn. (23)

Furthermore, observe that if ~v1, . . . , ~vn are unit vectors (i.e., they all have length 1), then the above would
further reduce to

~yAn =
(
~v>1 ~y

)
~v1 +

(
~v>2 ~y

)
~v2 + · · ·+

(
~v>n ~y

)
~vn (24)

=

 | |
~v1 . . . ~vn
| |

~v>1
...
~v>n

 ~y = AnA
>
n ~y (25)

Definition: A set of vectors {~v1, . . . , ~vn} is orthonormal if all the vectors are mutually orthogonal to each
other (i.e. ~v>i ~vj = 0 if i 6= j) and all are of unit length (i.e. ‖~vi‖ = 1 = ~v>i ~vi). Thus above, An has
orthonormal columns. We now will generalize what we did earlier by showing that for any matrix Q with n

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

orthonormal columns, Q>Q = In.

Q>Q =

~q>1
...

~qn
>

 | |
~q1 . . . ~qn
| |

 (26)

=

~q>1 ~q1 ~q>1 ~q2 . . . ~q>1 ~qn

~q>2 ~q1
. . . ~q>2 ~qn

...
. . .

...
~q>n q1 ~q>n ~q2 . . . ~q>n ~qn

 (27)

=

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = In (28)

Here we are using the property of orthonormal vectors that ~q>i ~qj = 0 when i 6= j and ~q>i ~qi = ||~qi||2 = 1.
Thus the diagonal of the matrix is ones and the rest are zeros, which is exactly the identity matrix.

Note that the above proof is general and applies to non-square matrices (so ~qi doesn’t need n elements).
However, we will specially refer to square matrices whose columns are orthonormal as orthonormal 1

matrices. If a square matrix Q is orthonormal, its columns will be orthonormal so Q>Q = I . Additionally,
one can show that all orthonormal matrices also have orthonormal rows, meaning Q> has orthonormal
columns, so (Q>)>Q> = QQ> = I . These two identities combined satisfy the definition of a matrix
inverse so Q> = Q−1, which is the key property (and often definition) of orthonormal matrices.

Using this proof, notice that the least-squares estimate with orthonormal vectors simplifies to ~yAn =
An(A

>
nAn)

−1A>n ~y = An(I)
−1A>n ~y = AnA

>
n ~y. By direct algebraic manipulation, we formally validated

our generalization in equation (25). Thus, we can see that having orthonormal vectors ~vi will make least
squares must faster and only consist of 1 matrix multiplication. But now you may ask how can we even
ensure that ~vi are orthonormal?

3 Orthonormalization
We want to take a sequence of linearly independent vectors ~v1, ~v2, . . . ~vn and construct a new sequence of

vectors ~q1, ~q2, . . . , ~qn that are orthonormal, i.e. ~q>i ~qj =

{
0 if i 6= j
1 if i = j

. Additionally, they must satisfy the

property that the subspace spanned by the first k of the original vectors, span(~v1, ~v2, . . . ~vk), is always the
same as the subspace spanned by the first k of the new vectors, span(~q1, ~q2, . . . , ~qk), for all 1 ≤ k ≤ n.

This might seem hard but we will start at the beginning and proceed systematically. We first let ~q1 =
~v1
‖~v1‖ to make it unit norm, and it will have the same span as ~v1. We will then leverage what we know
about projections and least-squares from 16A. We know that the residual vector after a projection is always
orthogonal 2 to the subspace being projected upon. So to ensure that the new vector ~qk is orthogonal, we

1In a bit of confusing notation, in math literature you will often see such matrices called orthogonal even when they want to
explicitly require that each column is normalized to have unit norm. We will try to use “orthonormal” to avoid this confusion.

2Recall that this is how we actually derived the least-squares formula!

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

can just remove all parts of ~vk that lie in the span of our previous vectors. From the previous section and
equation (24), since the ~qi are orthonormal, this is equivalent to subtracting each individual projection onto
all of our previous ~qi vectors. Consequently, we can recursively define

~qk =
~vk −

∑k−1
`=1 ~q`(~q

>
` ~vk)

‖~vk −
∑k−1

`=1 ~q`(~q
>
` ~vk)‖

. (29)

This has unit norm by construction and it is orthogonal to all the previous ~q` because it removes all the
projections of the new vector ~vk onto the subspace spanned by the ~q`. This collection also preserves the
same span because every new vector ~qk is just a linear combination of the original vectors. It turns out
that this very natural iterative process that we “discovered for ourselves” has a name: Gram-Schmidt
orthonormalization.

Using generic language, Gram-Schmidt is a procedure that takes a list3 of linearly independent vectors
{~v1, . . . , ~vn} and generates an orthonormal list of vectors {~q1, . . . , ~qn} that span the same subspaces as the
original list. Concretely, we will prove that {~q1, . . . , ~qn} from Gram-Schmidt satisfy the following:

{~q1, . . . , ~qn} is an orthonormal set of vectors (30)

span
(
{~v1, . . . , ~vk}

)
= span

(
{~q1, . . . , ~qk}

)
∀1 ≤ k ≤ n (31)

Proof of Orthonormality (30):

We first start with showing each vector is normal, or unit length. This is true by construction since we are
dividing a vector by the norm of that vector, so the result must have norm 1. In other words, for all vectors
~v, ∣∣∣∣∣∣ ~v‖~v‖ ∣∣∣∣∣∣ = 1

‖~v‖
‖~v‖ = 1 (32)

For showing orthogonality, we will use an induction proof, which we will introduce more formally in Note
14, and which will be discussed heavily in CS 70. Induction is basically just formalizing recursion which
you’ve already learned in CS 61A. Just like in recursion, we need a base case which will be n = 1 with
only ~q1. This is automatically orthogonal since there are no other vectors. We then assume that our first
k − 1 vectors are already orthonormal which is called the induction hypothesis (you might’ve heard this
be called the recursive leap of faith in 61A). We will then show that our new constructed vector ~qk will be
orthogonal to all previous ones, so ~q>p ~qk = 0 for all p = 1, . . . , k− 1. Note that constant factors don’t affect
orthogonality, so for simplicity we will call the 1/norm factor in (29) some constant A. Then,

~q>p ~qk = A~q>p (~vk −
k−1∑
`=1

~q`(~q
>
` ~vk)) (33)

= A(~q>p ~vk −
k−1∑
`=1

~q>p ~q`(~q
>
` ~vk)) (34)

Since we assumed the first k − 1 vectors are all orthonormal, the ~q>p ~q` will cause the only nonzero in the
summation to occur when ` = p. Then,

~q>p ~qk = A(~q>p ~vk − ~q>p ~qp(~q>p ~vk)) (35)

3The fact that these are lists and not sets matters. The vectors are ordered. We don’t just want the overall spans to be the same,
we want the spans to be the same as we walk down the lists together.

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

= A(~q>p ~vk − ~q>p ~vk) = 0 (36)

where we use the fact that ~q>p ~qp = 1 since we assumed it is orthonormal. Thus, for any k we know that
the next vector we construct will be orthogonal to all of our previous vectors. This means from our iterative
process, that all the vectors we construct are orthogonal to each other. Therefore, we have showed that the
vectors outputted by Gram-Schmidt are orthonormal. If this idea of induction is confusing, don’t worry as
CS 70 will cover it in much more detail.

Proof of Equivalent Span (31):

Again, we will use an inductive approach by assuming that the first k − 1 vectors of V and Q both span the
same space, so our induction hypothesis is span

(
{~v1, . . . , ~vk−1}

)
= span

(
{~q1, . . . , ~qk−1}

)
. We then want

to show the same holds for the first k vectors. This is true for our base case k = 1 since ~q1 = ~v1/‖~v1‖. Now
we need to show 2 things to finish the proof:

1. span
(
{~v1, . . . , ~vk}

)
⊆ span

(
{~q1, . . . , ~qk}

)
. From our induction hypothesis, we already know that the

first k− 1 vectors of V span the same space as the first k− 1 vectors of Q. This means we just need to show
that our new vector ~vk can be written as a linear combination of {~q1, . . . , ~qk}. By construction of ~qk from
(29), that is exactly true with

~vk =

∥∥∥∥∥∥~vk −
k−1∑
`=1

(~q>` ~vk)~q`

∥∥∥∥∥∥ ~qk +
k−1∑
`=1

(~q>` ~vk)~q` (37)

2. span
(
{~v1, . . . , ~vk}

)
⊇ span

(
{~q1, . . . , ~qk}

)
. Now we need to show that ~qk can be written as a linear

combination of {~v1, . . . , ~vk}. We know

~qk =
~vk −

∑k−1
`=1 ~q`(~q

>
` ~vk)

‖~vk −
∑k−1

`=1 ~q`(~q
>
` ~vk)‖

(38)

but also note that each of the ~q` can be written as a linear combination of span
(
{~v1, . . . , ~vk−1}

)
from our

induction hypothesis since 1 ≤ ` ≤ k − 1. Thus, we will be able to express ~qk as a sum of scaled ~vi.

Since span
(
{~v1, . . . , ~vk}

)
⊆ span

(
{~q1, . . . , ~qk}

)
and span

(
{~v1, . . . , ~vk}

)
⊇ span

(
{~q1, . . . , ~qk}

)
, then

span
(
{~v1, . . . , ~vk}

)
= span

(
{~q1, . . . , ~qk}

)
and we have completed the inductive proof. Thus, for all k, the

spans will be equivalent.

3.1 Example for three vectors
The above might have been a bit fast, so let’s walk through the reasoning for why (29) works for the case of
three vectors to make sure it is clear.

Consider three vectors {~v1, ~v2, ~v3} that are linearly independent of each other.

• Step 1: Find unit vector ~q1 such that span
(
{~q1}

)
= span

(
{~v1}

)
.

Since span({~v1}) is a one dimensional vector space, we can simply scale {~v1} so that it is unit norm:

~q1 =
~v1
‖~v1‖

. (39)

• Step 2: Given ~q1 from the previous step, find ~q2 such that span
(
{~q1, ~q2}

)
= span

(
{~v1, ~v2}

)
and

orthogonal to ~q1. We know that ~v2− (the projection of ~v2 on ~q1) would be orthogonal to ~q1 from 16A.

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 6

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

So first, we can find the error or residual

~e2 = ~v2 −
(
~q>1 ~v2

)
~q1, (40)

which is orthogonal to ~q1. Then, we can normalize to get ~q2 = ~e2
‖~e2‖ . Note that these operations

preserve the span because ~q1 and ~q2 are just linear combinations of ~v1 and ~v2 and vice-versa.

• Step 3: Now given ~q1 and ~q2 in the previous steps, we would like to find ~q3 such that span
(
{~q1, ~q2, ~q3}

)
=

span
(
{~v1, ~v2, ~v3}

)
. We know that the projection of ~v3 onto the subspace spanned by ~q1, ~q2 is(

~q>2 ~v3

)
~q2 +

(
~q>1 ~v3

)
~q1. (41)

Consequently, we know that the error/residual

~e3 = ~v3 −
[(
~q>2 ~v3

)
~q2 +

(
~q>1 ~v3

)
~q1

]
. (42)

is orthogonal to both ~q1 and ~q2. Normalizing, we have ~q3 = ~e3
‖~e3‖ .

3.2 Gram-Schmidt Algorithm
We can reformulate the mathematical definition in (29) as an iterative algorithm as follows:

Inputs

• A list of linearly independent vectors {~v1, . . . , ~vn}.

Outputs

• An orthonormal list of vectors {~q1, . . . , ~qn}, where span
(
{~v1, . . . , ~vk}

)
= span

(
{~q1, . . . , ~qk}

)
for all

1 ≤ k ≤ n.

Gram Schmidt Procedure

• compute ~q1 : ~q1 = ~v1
‖~v1‖

• for (i = 2 . . . n):

(a) Compute the vector ~ei, such that span
(
{~q1, . . . , ~qi−1, ~ei}

)
= span

(
{~v1, . . . , ~vi}

)
:

~ei = ~vi −
i−1∑
`=1

(
~q>` ~vi

)
~q` (43)

(b) Normalize to compute ~qi itself: ~qi = ~ei
‖~ei‖ .

Note that so far we only assumed that our input vectors can be linearly independent. What happens if they’re
not? Assume we have ~v1 and ~v2 which are linearly dependent which means ~v2 = α~v1 for some constant α.
We will do the first iteration of Gram-Schmidt to get ~q1 = ~v1/‖~v1‖. Then during the second iteration, what
will be the projection of ~v2 onto ~q1?

proj~q1~v2 = (~vT2 ~q1)~q1 (44)

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 7

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

= α(~vT1 ~q1)~q1 (45)

= α
~vT1 ~v1
‖~v1‖

~v1
‖~v1‖

(46)

= α
‖~v1‖2

‖~v1‖
~v1
‖~v1‖

(47)

= α~v1 = ~v2 (48)

We’ve just recovered our original vector! This should make sense since all of ~v2 lies along the direction of
~q1. This means that the residual term ~e2 = ~0 in (43) so our normalization step will fail. How do we fix this?
Well our new ~vi+1 vector is already being spanned by our existing ~q1, . . . , ~qi vectors, so we don’t need any
new ~qi+1 vector. Thus, we can just skip this iteration and move on to the next vector to orthonormalize. This
will just mean we will have less ~q vectors than ~v vectors.

3.3 Creating an Orthonormal Basis
Let’s assume that we already have k orthonormal vectors ~v1, . . . ~vk that are each n-dimensional with k < n.
We now want to create an orthonormal basis of vectors starting from the k we have, meaning we want to
find n− k vectors that are orthonormal to the ones we currently have. 4

Can we use Gram-Schmidt to do this for us somehow? It turns out we can, precisely due to the equivalent
span property of Gram-Schmidt. As long as we give Gram-Schmidt vectors that span Rn then it must output
a set of orthonormal vectors that also span Rn, meaning it outputs an orthonomal basis.

As an example, we can feed the vectors ~v1, . . . , ~vk, ~I1, . . . , ~In where ~Ip is the pth column of the identity
matrix. Clearly, this set of vectors must span Rn since it contains all the columns of the identity matrix
which already span Rn. Since there are more than n vectors in total, it also means that this set of vectors is
linearly dependent. Then according to our modification of the algorithm from the previous section, we will
have to eventually skip an iteration. But since the first k are already orthonormal and linearly independent,
they must be included and so we will only skip certain columns of the identity matrix. At the end, we will
get n orthonormal vectors which form a basis, with the first k being the original vectors as desired.

4 QR Decomposition
If we take a look at equation (37) we can see that we can write ~vk as linear combination of only ~q1, . . . , ~qk,
and that this holds for all 1 ≤ k ≤ n. This should remind us of a triangular structure similar to what you’ve
seen in Gaussian elimination, and this will actually lead us to a new discovery.

Simplifying equation (37) with the notation from section 3.2, we get that the norm term
∥∥∥~vk −∑k−1

`=1 (~q
>
` ~vk)~q`

∥∥∥ =

‖~ek‖. Then equation (37) for k = 1, 2, . . . , n becomes

~v1 =‖~e1‖ ~q1 (49)

~v2 =‖~e2‖ ~q2 + (~q>1 ~v2)~q1 (50)
...

4The reason for why we want to do this might not be immediately clear, but they make algebra much simpler due to the nice
property that the inverse of an orthonormal matrix is its transpose. Additionally, we will use orthonormal bases a lot in the next few
notes as they are core to several linear algebra algorithms.

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 8

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

~vn =‖~en‖ ~qn +
n−1∑
`=1

(~q>` ~vn)~q` (51)

Converting the above equations to matrix multiplication form, we get

[
~v1 ~v2 . . . ~vn

]
=
[
~q1 . . . ~qn

]

‖~e1‖ ~q>1 ~v2 ~q>1 ~v3 . . . ~q>1 ~vn
0 ‖~e2‖ ~q>2 ~v3 . . . ~q>2 ~vn
0 0 ‖~e3‖ . . . ~q>3 ~vn
...

...
...

. . .
...

0 0 0 . . . ‖~en‖

 (52)

V = QR (53)

This gives us a way to transform between the original vectors ~vi and the Gram-Schmidt orthonormalized
vectors ~qi through an upper-triangular square matrixR. SinceR is upper-triangular and square with positive
values on its diagonal, it has only positive eigenvalues and is thus invertible. This is another way to prove
that rank(V) = rank(Q), meaning the columns have the same span. An important thing to note is that
every entry ofR will already be computed by the Gram-Schmidt algorithm, so we can directly construct this
matrix as we perform the algorithm with no extra calculations necessary.

An alternate view is since we can apply Gram-Schmidt to any set of linearly independent vectors, it shows
us that any matrix V with linearly independent columns can be decomposed into a matrix with orthonormal
columns Q and an upper-triangular square matrix R, and this is called the QR Decomposition.

Note that you can also define the QR decomposition for matrices that aren’t linearly independent. However
in this case, since Gram-Schmidt will skip over certain vectors, you will have less number of ~qi vectors than
~vi vectors, and thus you will get an R matrix that is now rectangular.

5 Speeding Up Least Squares
Now with these tools under our belt, we can go back to our initial issue of speeding up our system ID
problems from Section 1. What we can now do is apply Gram-Schmidt orthonormalization to the columns
of Dn, starting from the rightmost column to the leftmost, which will return a set of orthonormal vectors
~q0, ~q1, . . . , ~qn that span the same subspaces as the columns in Dn.

Q1 =
[
~q1 ~q0

]
(54)

Q2 =
[
~q2 ~q1 ~q0

]
(55)

...

Qn =
[
~qn . . . ~q0

]
(56)

Since all theQi have orthonormal columns, we knowQ>i Qi = I so the least squares solution (Q>i Qi)
−1Q>i ~y

simplifies drastically to just Q>i ~y. We can then solve the least squares problems Qi ~wi ≈ ~y with

~̂w1 = Q>1 ~y (57)
...

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 9

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

~̂wn = Q>n ~y (58)

which is very easy computationally. Importantly, each successive problem only requires 1 more dot product
with ~qi and ~y when compared to the last problem, as opposed to recalculating the entire least squares
solution.

However, note that the parameters we get are some ~̂wi which are different than the original ~̂xi parameters
due to changing the data from Ai to Qi. Thus, we must have some post-processing step to convert each ~̂wi

to ~̂xi. What is the relation between them? Well we know that since Ai and Qi have the same column space,
then the projection of ~y onto their column space is the same so

Ai
~̂xi = Qi

~̂wi (59)

We now use the QR decomposition from (53) to say that Ai = QiRi so

Ai
~̂xi = QiRi

~̂xi = Qi
~̂wi (60)

Ri
~̂xi = ~̂wi (61)

where we left multiplied the first equation by Q>i to get the second equation. Now we just need to solve this
n×n system of equations to get ~̂xi. But a key property is that R is upper-triangular and square, and so from
our knowledge of Gaussian elimination, we just need to back-substitute all the equations starting from the
bottom row. This will just take time proportional to the number of entries, so it will take O(n2) time which
is faster than the time for a generic inverse calculation O(n3).

Overall, it’s now much faster to try fit a one higher n + 1 dimension model if we want — instead of doing
a whole (D>n+1Dn+1)

−1D>n+1~y calculation again in O(n3) time, it becomes one extra iteration of Gram-
Schmidt to orthonormalize our new column to ~qn+1 in O(nm) time, then 1 extra dot product to get the
new entry of ~̂wn+1 in O(m) time, and then applying the post-processing step by back-substituting Rn+1 in
O(n2) time. This gives an overall runtime of O(n2) which is much more efficient than the default O(n3).

Contributors:

• Ashwin Vangipuram.

• Anant Sahai.

• Jennifer Shih.

• Rachel Hochman.

• Vasuki Narasimha Swamy.

• Steven Cao.

Note 12: Orthonormalization, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 10

	Repeated System ID
	Orthogonal Vectors and Projection
	Orthonormalization
	Example for three vectors
	Gram-Schmidt Algorithm
	Creating an Orthonormal Basis

	QR Decomposition
	Speeding Up Least Squares

