EECS 16B Designing Information Devices and Systems II Fall 2021 Note 12: Orthonormalization

1 Repeated System ID

÷

So far when performing system ID, we assumed that we already knew what type of model our system was, e.g. whether it was a first order, second order, or *n*th order difference equation. However, this assumption may not be valid all the time, and so we might not have a good idea of the order of our system. One way to deal with this is to try fit a first order model, second order model, and so on till an *n*th order model, and compare how well the models perform on a test set of data. Let's consider what must happen for us to do this.

For this example, we will just consider the case of a scalar state with a scalar input. Then we will have the following candidate models:

$$y_1[i] = a_1 y[i-1] + b u[i-1]$$
(1)

$$y_2[i] = a_2 y[i-2] + a_1 y[i-1] + b u[i-1]$$
⁽²⁾

$$y_n[i] = a_n y[i-n] + a_{n-1} y[i-(n-1)] + \dots + a_1 y[i-1] + bu[i-1]$$
(3)

If we try to do system ID for the first order system (1) with r rows of data, we end up with the following least square problem:

$$D_1 \vec{x}_1 \approx \vec{y} \tag{4}$$

$$\begin{bmatrix} y[0] & u[0] \\ y[1] & u[1] \\ \vdots & \vdots \\ y[r-1] & u[r-1] \end{bmatrix} \begin{bmatrix} a_1 \\ b \end{bmatrix} \approx \begin{bmatrix} y[1] \\ y[2] \\ \vdots \\ y[r] \end{bmatrix}$$
(5)

Now note that to construct the system ID matrix for the second order system (2) just requires adding another column to the left of our data matrix. Here, for all negative time i < 0, we assume y[i] = 0.

$$D_2 \vec{x}_2 \approx \vec{y} \tag{6}$$

$$\begin{bmatrix} y[-1] & y[0] & u[0] \\ y[0] & y[1] & u[1] \\ \vdots & \vdots & \vdots \\ y[r-2] & y[r-1] & u[r-1] \end{bmatrix} \begin{bmatrix} a_2 \\ a_1 \\ b \end{bmatrix} \approx \begin{bmatrix} y[1] \\ y[2] \\ \vdots \\ y[r] \end{bmatrix}$$
(7)

This can be repeated, so each next higher order will require 1 more column on the left to the data matrix. Then, we will need to calculate the least squares solution for each problem, getting

$$\vec{\hat{x}}_1 = (D_1^\top D_1)^{-1} D_1^\top \vec{y}$$
(8)

$$\vec{\hat{x}}_2 = (D_2^\top D_2)^{-1} D_2^\top \vec{y}$$
(9)

$$\vec{\hat{x}}_n = (D_n^\top D_n)^{-1} D_n^\top \vec{y}$$
(10)

This could take a lot of time if r and n are very large, especially the matrix inverse operation as it is $O(k^3)$ runtime where k is the number of rows of the matrix. Is there any way we can take advantage of the structure of our D_i matrices (where D_{i+1} is just 1 more column added to D_i) to make this process faster?

It turns out there is, and it relies on a process called **Gram-Schmidt orthonormalization**, which will be the focus of this note.

2 Orthogonal Vectors and Projection

Recall from 16A that two vectors \vec{v}, \vec{w} are orthogonal if they are 90° apart. Remember that an equivalent definition is that they are orthogonal if and only if

$$\langle \vec{v}, \vec{w} \rangle = \vec{v}^{\top} \vec{w} = \vec{w}^{\top} \vec{v} = 0 \tag{11}$$

Recall that the orthogonal projection of a vector \vec{y} on to any other nonzero vector \vec{b} is

$$\vec{y}_{\vec{b}} = \frac{\vec{y}^{\top}\vec{b}}{\left\|\vec{b}\right\|^2}\vec{b}$$
(12)

Also recall that least squares is just an orthogonal projection of a vector \vec{y} onto an entire subspace of vectors spanned by the columns of A, so

$$\vec{y}_A = A\hat{x} = A(A^{\top}A)^{-1}A^{\top}\vec{y}$$
 (13)

In this section, we will show that if the columns of A are mutually orthogonal to each other, the projection of \vec{y} onto span(A) is the sum of the projection of \vec{y} onto each column of A individually. Let's take a look at

the case where we have 2 orthogonal vectors, \vec{v}_1 and \vec{v}_2 , so $A = \begin{vmatrix} | & | \\ \vec{v}_1 & \vec{v}_2 \\ | & | \end{vmatrix}$.

Let's first compute the term $(A^{\top}A)^{-1}$:

$$A^{\top}A = \begin{bmatrix} - & \vec{v}_1^{\top} & - \\ - & \vec{v}_2^{\top} & - \end{bmatrix} \begin{bmatrix} | & | \\ \vec{v}_1 & \vec{v}_2 \\ | & | \end{bmatrix}$$
(14)

$$= \begin{bmatrix} \vec{v}_{1}^{\top} \vec{v}_{1} & \vec{v}_{1}^{\top} \vec{v}_{2} \\ \vec{v}_{2}^{\top} \vec{v}_{1} & \vec{v}_{2}^{\top} \vec{v}_{2} \end{bmatrix}$$
(15)

$$= \begin{bmatrix} \|\vec{v}_1\|^2 & 0\\ 0 & \|\vec{v}_2\|^2 \end{bmatrix}.$$
 (16)

We have a diagonal matrix with non-negative diagonal entries and so

$$\left(A^{\top}A\right)^{-1} = \begin{bmatrix} \frac{1}{\|\vec{v}_1\|^2} & 0\\ 0 & \frac{1}{\|\vec{v}_2\|^2} \end{bmatrix}.$$
 (17)

Then, substituting this matrix into the original expression, the projection of \vec{y} onto span(A) is

$$\vec{y}_A = A \left(A^\top A \right)^{-1} A^\top \vec{y} \tag{18}$$

$$= \begin{bmatrix} | & | \\ \vec{v}_{1} & \vec{v}_{2} \\ | & | \end{bmatrix} \begin{bmatrix} \frac{1}{\|\vec{v}_{1}\|^{2}} & 0 \\ 0 & \frac{1}{\|\vec{v}_{2}\|^{2}} \end{bmatrix} \begin{bmatrix} - & \vec{v}_{1}^{\top} & - \\ - & \vec{v}_{2}^{\top} & - \end{bmatrix} \vec{y}$$
(19)

$$= \begin{bmatrix} | & | \\ \vec{v}_1 & \vec{v}_2 \\ | & | \end{bmatrix} \begin{bmatrix} \frac{1}{\|\vec{v}_1\|^2} & 0 \\ 0 & \frac{1}{\|\vec{v}_2\|^2} \end{bmatrix} \begin{bmatrix} \vec{v}_1^\top \vec{y} \\ \vec{v}_2^\top \vec{y} \end{bmatrix}$$
(20)

$$= \begin{bmatrix} | & | \\ \vec{v}_1 & \vec{v}_2 \\ | & | \end{bmatrix} \begin{bmatrix} \frac{\vec{v}_1^{\top} \vec{y}}{\|\vec{v}_1\|^2} \\ \frac{\vec{v}_2^{\top} \vec{y}}{\|\vec{v}_2\|^2} \end{bmatrix}$$
(21)

$$= \left(\frac{\vec{v}_{1}^{\top}\vec{y}}{\|\vec{v}_{1}\|^{2}}\right)\vec{v}_{1} + \left(\frac{\vec{v}_{2}^{\top}\vec{y}}{\|\vec{v}_{2}\|^{2}}\right)\vec{v}_{2}.$$
(22)

Observe that the first term in the sum above is the projection of \vec{y} onto $\vec{v_1}$ and the second term is the projection of \vec{y} onto $\vec{v_2}$. Generalizing this pattern, we can guess that the projection of \vec{y} onto span (A_n) where A_n has n mutually orthogonal columns is

$$\vec{y}_{A_n} = \left(\frac{\vec{v}_1^\top \vec{y}}{\|\vec{v}_1\|^2}\right) \vec{v}_1 + \left(\frac{\vec{v}_2^\top \vec{y}}{\|\vec{v}_2\|^2}\right) \vec{v}_2 + \dots + \left(\frac{\vec{v}_n^\top \vec{y}}{\|\vec{v}_n\|^2}\right) \vec{v}_n.$$
(23)

Furthermore, observe that if $\vec{v}_1, \ldots, \vec{v}_n$ are unit vectors (i.e., they all have length 1), then the above would further reduce to

$$\vec{y}_{A_n} = \left(\vec{v}_1^\top \vec{y}\right) \vec{v}_1 + \left(\vec{v}_2^\top \vec{y}\right) \vec{v}_2 + \dots + \left(\vec{v}_n^\top \vec{y}\right) \vec{v}_n$$
(24)

$$= \begin{bmatrix} | & | \\ \vec{v}_1 & \dots & \vec{v}_n \\ | & | \end{bmatrix} \begin{bmatrix} - & \vec{v}_1^\top & - \\ \vdots \\ - & \vec{v}_n^\top & - \end{bmatrix} \vec{y} = A_n A_n^\top \vec{y}$$
(25)

Definition: A set of vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is **orthonormal** if all the vectors are mutually orthogonal to each other (i.e. $\vec{v}_i^{\top}\vec{v}_j = 0$ if $i \neq j$) and all are of unit length (i.e. $\|\vec{v}_i\| = 1 = \vec{v}_i^{\top}\vec{v}_i$). Thus above, A_n has orthonormal columns. We now will generalize what we did earlier by showing that for any matrix Q with n

orthonormal columns, $Q^{\top}Q = I_n$.

$$Q^{\top}Q = \begin{bmatrix} - & \vec{q}_{1}^{\top} & - \\ & \vdots & \\ - & \vec{q}_{n}^{\top} & - \end{bmatrix} \begin{bmatrix} | & | & | \\ \vec{q}_{1} & \dots & \vec{q}_{n} \\ | & | \end{bmatrix}$$

$$\begin{bmatrix} \vec{q}_{1}^{\top}\vec{q}_{1} & \vec{q}_{1}^{\top}\vec{q}_{2} & \dots & \vec{q}_{1}^{\top}\vec{q}_{n} \\ \vec{q}_{1}^{\top} \vec{q}_{1} & \vec{q}_{1}^{\top}\vec{q}_{2} & \dots & \vec{q}_{1}^{\top}\vec{q}_{n} \end{bmatrix}$$
(26)

$$= \begin{bmatrix} \vec{q}_{2}^{\top} \vec{q}_{1} & \ddots & \vec{q}_{2}^{\top} \vec{q}_{n} \\ \vdots & \ddots & \vdots \\ \vec{q}_{n}^{\top} q_{1} & \vec{q}_{n}^{\top} \vec{q}_{2} & \cdots & \vec{q}_{n}^{\top} \vec{q}_{n} \end{bmatrix}$$
(27)
$$= \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_{n}$$
(28)

Here we are using the property of orthonormal vectors that $\vec{q}_i^{\top} \vec{q}_j = 0$ when $i \neq j$ and $\vec{q}_i^{\top} \vec{q}_i = ||\vec{q}_i||^2 = 1$. Thus the diagonal of the matrix is ones and the rest are zeros, which is exactly the identity matrix.

Note that the above proof is general and applies to non-square matrices (so $\vec{q_i}$ doesn't need *n* elements). However, we will specially refer to square matrices whose columns are orthonormal as **orthonormal**¹ **matrices**. If a square matrix *Q* is orthonormal, its columns will be orthonormal so $Q^{\top}Q = I$. Additionally, one can show that all orthonormal matrices also have orthonormal rows, meaning Q^{\top} has orthonormal columns, so $(Q^{\top})^{\top}Q^{\top} = QQ^{\top} = I$. These two identities combined satisfy the definition of a matrix inverse so $Q^{\top} = Q^{-1}$, which is the key property (and often definition) of orthonormal matrices.

Using this proof, notice that the least-squares estimate with orthonormal vectors simplifies to $\vec{y}_{A_n} = A_n (A_n^{\top} A_n)^{-1} A_n^{\top} \vec{y} = A_n (I)^{-1} A_n^{\top} \vec{y} = A_n A_n^{\top} \vec{y}$. By direct algebraic manipulation, we formally validated our generalization in equation (25). Thus, we can see that having orthonormal vectors \vec{v}_i will make least squares must faster and only consist of 1 matrix multiplication. But now you may ask how can we even ensure that \vec{v}_i are orthonormal?

3 Orthonormalization

We want to take a sequence of linearly independent vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and construct a new sequence of vectors $\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_n$ that are orthonormal, i.e. $\vec{q}_i^{\top} \vec{q}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$. Additionally, they must satisfy the property that the subspace spanned by the first k of the original vectors, $\operatorname{span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k)$, is always the same as the subspace spanned by the first k of the new vectors, $\operatorname{span}(\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_k)$, for all $1 \leq k \leq n$.

This might seem hard but we will start at the beginning and proceed systematically. We first let $\vec{q_1} = \frac{\vec{v_1}}{\|\vec{v_1}\|}$ to make it unit norm, and it will have the same span as $\vec{v_1}$. We will then leverage what we know about projections and least-squares from 16A. We know that the residual vector after a projection is always orthogonal ² to the subspace being projected upon. So to ensure that the new vector $\vec{q_k}$ is orthogonal, we

¹In a bit of confusing notation, in math literature you will often see such matrices called orthogonal even when they want to explicitly require that each column is normalized to have unit norm. We will try to use "orthonormal" to avoid this confusion.

²Recall that this is how we actually derived the least-squares formula!

can just remove all parts of \vec{v}_k that lie in the span of our previous vectors. From the previous section and equation (24), since the \vec{q}_i are orthonormal, this is equivalent to subtracting each individual projection onto all of our previous \vec{q}_i vectors. Consequently, we can recursively define

$$\vec{q}_{k} = \frac{\vec{v}_{k} - \sum_{\ell=1}^{k-1} \vec{q}_{\ell}(\vec{q}_{\ell}^{\top} \vec{v}_{k})}{\|\vec{v}_{k} - \sum_{\ell=1}^{k-1} \vec{q}_{\ell}(\vec{q}_{\ell}^{\top} \vec{v}_{k})\|}.$$
(29)

This has unit norm by construction and it is orthogonal to all the previous $\vec{q_{\ell}}$ because it removes all the projections of the new vector $\vec{v_k}$ onto the subspace spanned by the $\vec{q_{\ell}}$. This collection also preserves the same span because every new vector $\vec{q_k}$ is just a linear combination of the original vectors. It turns out that this very natural iterative process that we "discovered for ourselves" has a name: **Gram-Schmidt** orthonormalization.

Using generic language, Gram-Schmidt is a procedure that takes a list³ of linearly independent vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ and generates an orthonormal list of vectors $\{\vec{q}_1, \ldots, \vec{q}_n\}$ that span the same subspaces as the original list. Concretely, we will prove that $\{\vec{q}_1, \ldots, \vec{q}_n\}$ from Gram-Schmidt satisfy the following:

$$\{\vec{q}_1, \dots, \vec{q}_n\}$$
 is an orthonormal set of vectors (30)

$$\operatorname{span}(\{\vec{v}_1, \dots, \vec{v}_k\}) = \operatorname{span}(\{\vec{q}_1, \dots, \vec{q}_k\}) \quad \forall 1 \le k \le n$$
(30)

Proof of Orthonormality (30):

We first start with showing each vector is normal, or unit length. This is true by construction since we are dividing a vector by the norm of that vector, so the result must have norm 1. In other words, for all vectors \vec{v} ,

$$\left| \left| \frac{\vec{v}}{\|\vec{v}\|} \right| \right| = \frac{1}{\|\vec{v}\|} \|\vec{v}\| = 1$$
(32)

For showing orthogonality, we will use an induction proof, which we will introduce more formally in Note 14, and which will be discussed heavily in CS 70. Induction is basically just formalizing recursion which you've already learned in CS 61A. Just like in recursion, we need a base case which will be n = 1 with only $\vec{q_1}$. This is automatically orthogonal since there are no other vectors. We then assume that our first k - 1 vectors are already orthonormal which is called the induction hypothesis (you might've heard this be called the recursive leap of faith in 61A). We will then show that our new constructed vector $\vec{q_k}$ will be orthogonal to all previous ones, so $\vec{q_p^{\top}} \vec{q_k} = 0$ for all $p = 1, \ldots, k - 1$. Note that constant factors don't affect orthogonality, so for simplicity we will call the 1/norm factor in (29) some constant A. Then,

$$\vec{q}_{p}^{\top}\vec{q}_{k} = A\vec{q}_{p}^{\top}(\vec{v}_{k} - \sum_{\ell=1}^{k-1} \vec{q}_{\ell}(\vec{q}_{\ell}^{\top}\vec{v}_{k}))$$
(33)

$$= A(\vec{q}_{p}^{\top}\vec{v}_{k} - \sum_{\ell=1}^{k-1} \vec{q}_{p}^{\top}\vec{q}_{\ell}(\vec{q}_{\ell}^{\top}\vec{v}_{k}))$$
(34)

Since we assumed the first k-1 vectors are all orthonormal, the $\vec{q}_p^{\top} \vec{q}_\ell$ will cause the only nonzero in the summation to occur when $\ell = p$. Then,

$$\vec{q}_{p}^{\top}\vec{q}_{k} = A(\vec{q}_{p}^{\top}\vec{v}_{k} - \vec{q}_{p}^{\top}\vec{q}_{p}(\vec{q}_{p}^{\top}\vec{v}_{k}))$$
(35)

³The fact that these are lists and not sets matters. The vectors are ordered. We don't just want the overall spans to be the same, we want the spans to be the same as we walk down the lists together.

$$=A(\vec{q}_p^{\top}\vec{v}_k - \vec{q}_p^{\top}\vec{v}_k) = 0$$
(36)

where we use the fact that $\vec{q}_p^{\top} \vec{q}_p = 1$ since we assumed it is orthonormal. Thus, for any k we know that the next vector we construct will be orthogonal to all of our previous vectors. This means from our iterative process, that all the vectors we construct are orthogonal to each other. Therefore, we have showed that the vectors outputted by Gram-Schmidt are orthonormal. If this idea of induction is confusing, don't worry as CS 70 will cover it in much more detail.

Proof of Equivalent Span (31):

Again, we will use an inductive approach by assuming that the first k - 1 vectors of V and Q both span the same space, so our induction hypothesis is $\operatorname{span}(\{\vec{v}_1, \ldots, \vec{v}_{k-1}\}) = \operatorname{span}(\{\vec{q}_1, \ldots, \vec{q}_{k-1}\})$. We then want to show the same holds for the first k vectors. This is true for our base case k = 1 since $\vec{q}_1 = \vec{v}_1/||\vec{v}_1||$. Now we need to show 2 things to finish the proof:

1. span $(\{\vec{v}_1, \ldots, \vec{v}_k\}) \subseteq \text{span}(\{\vec{q}_1, \ldots, \vec{q}_k\})$. From our induction hypothesis, we already know that the first k-1 vectors of V span the same space as the first k-1 vectors of Q. This means we just need to show that our new vector \vec{v}_k can be written as a linear combination of $\{\vec{q}_1, \ldots, \vec{q}_k\}$. By construction of \vec{q}_k from (29), that is exactly true with

$$\vec{v}_{k} = \left\| \vec{v}_{k} - \sum_{\ell=1}^{k-1} (\vec{q}_{\ell}^{\top} \vec{v}_{k}) \vec{q}_{\ell} \right\| \vec{q}_{k} + \sum_{\ell=1}^{k-1} (\vec{q}_{\ell}^{\top} \vec{v}_{k}) \vec{q}_{\ell}$$
(37)

2. $\operatorname{span}(\{\vec{v}_1,\ldots,\vec{v}_k\}) \supseteq \operatorname{span}(\{\vec{q}_1,\ldots,\vec{q}_k\})$. Now we need to show that \vec{q}_k can be written as a linear combination of $\{\vec{v}_1,\ldots,\vec{v}_k\}$. We know

$$\vec{q}_{k} = \frac{\vec{v}_{k} - \sum_{\ell=1}^{k-1} \vec{q}_{\ell}(\vec{q}_{\ell}^{\top} \vec{v}_{k})}{\|\vec{v}_{k} - \sum_{\ell=1}^{k-1} \vec{q}_{\ell}(\vec{q}_{\ell}^{\top} \vec{v}_{k})\|}$$
(38)

but also note that each of the \vec{q}_{ℓ} can be written as a linear combination of span({ $\vec{v}_1, \ldots, \vec{v}_{k-1}$ }) from our induction hypothesis since $1 \le \ell \le k-1$. Thus, we will be able to express \vec{q}_k as a sum of scaled \vec{v}_i .

Since $\operatorname{span}(\{\vec{v}_1,\ldots,\vec{v}_k\}) \subseteq \operatorname{span}(\{\vec{q}_1,\ldots,\vec{q}_k\})$ and $\operatorname{span}(\{\vec{v}_1,\ldots,\vec{v}_k\}) \supseteq \operatorname{span}(\{\vec{q}_1,\ldots,\vec{q}_k\})$, then $\operatorname{span}(\{\vec{v}_1,\ldots,\vec{v}_k\}) = \operatorname{span}(\{\vec{q}_1,\ldots,\vec{q}_k\})$ and we have completed the inductive proof. Thus, for all k, the spans will be equivalent.

3.1 Example for three vectors

The above might have been a bit fast, so let's walk through the reasoning for why (29) works for the case of three vectors to make sure it is clear.

Consider three vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ that are linearly independent of each other.

• Step 1: Find unit vector $\vec{q_1}$ such that $\operatorname{span}(\{\vec{q_1}\}) = \operatorname{span}(\{\vec{v_1}\})$. Since $\operatorname{span}(\{\vec{v_1}\})$ is a one dimensional vector space, we can simply scale $\{\vec{v_1}\}$ so that it is unit norm:

$$\vec{q_1} = \frac{\vec{v_1}}{\|\vec{v_1}\|}.$$
(39)

• Step 2: Given $\vec{q_1}$ from the previous step, find $\vec{q_2}$ such that $\operatorname{span}(\{\vec{q_1}, \vec{q_2}\}) = \operatorname{span}(\{\vec{v_1}, \vec{v_2}\})$ and orthogonal to $\vec{q_1}$. We know that $\vec{v_2}$ – (the projection of $\vec{v_2}$ on $\vec{q_1}$) would be orthogonal to $\vec{q_1}$ from 16A.

So first, we can find the error or residual

$$\vec{e}_2 = \vec{v}_2 - \left(\vec{q}_1^\top \vec{v}_2\right) \vec{q}_1, \tag{40}$$

which is orthogonal to $\vec{q_1}$. Then, we can normalize to get $\vec{q_2} = \frac{\vec{e_2}}{\|\vec{e_2}\|}$. Note that these operations preserve the span because $\vec{q_1}$ and $\vec{q_2}$ are just linear combinations of $\vec{v_1}$ and $\vec{v_2}$ and vice-versa.

• Step 3: Now given $\vec{q_1}$ and $\vec{q_2}$ in the previous steps, we would like to find $\vec{q_3}$ such that span $(\{\vec{q_1}, \vec{q_2}, \vec{q_3}\}) =$ span $(\{\vec{v_1}, \vec{v_2}, \vec{v_3}\})$. We know that the projection of $\vec{v_3}$ onto the subspace spanned by $\vec{q_1}, \vec{q_2}$ is

$$\left(\vec{q}_2^{\top}\vec{v}_3\right)\vec{q}_2 + \left(\vec{q}_1^{\top}\vec{v}_3\right)\vec{q}_1.$$
(41)

Consequently, we know that the error/residual

$$\vec{e}_{3} = \vec{v}_{3} - \left[\left(\vec{q}_{2}^{\top} \vec{v}_{3} \right) \vec{q}_{2} + \left(\vec{q}_{1}^{\top} \vec{v}_{3} \right) \vec{q}_{1} \right].$$
(42)

is orthogonal to both $\vec{q_1}$ and $\vec{q_2}$. Normalizing, we have $\vec{q_3} = \frac{\vec{e_3}}{\|\vec{e_3}\|}$.

3.2 Gram-Schmidt Algorithm

We can reformulate the mathematical definition in (29) as an iterative algorithm as follows:

Inputs

• A list of linearly independent vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$.

Outputs

• An orthonormal list of vectors $\{\vec{q}_1, \ldots, \vec{q}_n\}$, where $\operatorname{span}(\{\vec{v}_1, \ldots, \vec{v}_k\}) = \operatorname{span}(\{\vec{q}_1, \ldots, \vec{q}_k\})$ for all $1 \le k \le n$.

Gram Schmidt Procedure

- compute $\vec{q_1} : \vec{q_1} = \frac{\vec{v_1}}{\|\vec{v_1}\|}$
- for (i = 2...n):
 - (a) Compute the vector \vec{e}_i , such that $\operatorname{span}(\{\vec{q}_1,\ldots,\vec{q}_{i-1},\vec{e}_i\}) = \operatorname{span}(\{\vec{v}_1,\ldots,\vec{v}_i\})$:

$$\vec{e}_i = \vec{v}_i - \sum_{\ell=1}^{i-1} \left(\vec{q}_\ell^\top \vec{v}_i \right) \vec{q}_\ell \tag{43}$$

(b) Normalize to compute $\vec{q_i}$ itself: $\vec{q_i} = \frac{\vec{e_i}}{\|\vec{e_i}\|}$.

Note that so far we only assumed that our input vectors can be linearly independent. What happens if they're not? Assume we have \vec{v}_1 and \vec{v}_2 which are linearly dependent which means $\vec{v}_2 = \alpha \vec{v}_1$ for some constant α . We will do the first iteration of Gram-Schmidt to get $\vec{q}_1 = \vec{v}_1/|\vec{v}_1||$. Then during the second iteration, what will be the projection of \vec{v}_2 onto \vec{q}_1 ?

$$\operatorname{proj}_{\vec{q}_1} \vec{v}_2 = (\vec{v}_2^T \vec{q}_1) \vec{q}_1 \tag{44}$$

$$= \alpha (\vec{v}_1^T \vec{q}_1) \vec{q}_1 \tag{45}$$

$$= \alpha \frac{\vec{v}_1^T \vec{v}_1}{\|\vec{v}_1\|} \frac{\vec{v}_1}{\|\vec{v}_1\|}$$
(46)

$$= \alpha \frac{\|\vec{v}_1\|^2}{\|\vec{v}_1\|} \frac{\vec{v}_1}{\|\vec{v}_1\|}$$
(47)

$$=\alpha \vec{v}_1 = \vec{v}_2 \tag{48}$$

We've just recovered our original vector! This should make sense since all of \vec{v}_2 lies along the direction of \vec{q}_1 . This means that the residual term $\vec{e}_2 = \vec{0}$ in (43) so our normalization step will fail. How do we fix this? Well our new \vec{v}_{i+1} vector is already being spanned by our existing $\vec{q}_1, \ldots, \vec{q}_i$ vectors, so we don't need any new \vec{q}_{i+1} vector. Thus, we can just skip this iteration and move on to the next vector to orthonormalize. This will just mean we will have less \vec{q} vectors than \vec{v} vectors.

3.3 Creating an Orthonormal Basis

Let's assume that we already have k orthonormal vectors $\vec{v}_1, \ldots, \vec{v}_k$ that are each n-dimensional with k < n. We now want to create an orthonormal basis of vectors starting from the k we have, meaning we want to find n - k vectors that are orthonormal to the ones we currently have.⁴

Can we use Gram-Schmidt to do this for us somehow? It turns out we can, precisely due to the equivalent span property of Gram-Schmidt. As long as we give Gram-Schmidt vectors that span \mathbb{R}^n then it must output a set of orthonormal vectors that also span \mathbb{R}^n , meaning it outputs an orthonormal basis.

As an example, we can feed the vectors $\vec{v}_1, \ldots, \vec{v}_k, \vec{I}_1, \ldots, \vec{I}_n$ where \vec{I}_p is the *p*th column of the identity matrix. Clearly, this set of vectors must span \mathbb{R}^n since it contains all the columns of the identity matrix which already span \mathbb{R}^n . Since there are more than *n* vectors in total, it also means that this set of vectors is linearly dependent. Then according to our modification of the algorithm from the previous section, we will have to eventually skip an iteration. But since the first *k* are already orthonormal and linearly independent, they must be included and so we will only skip certain columns of the identity matrix. At the end, we will get *n* orthonormal vectors which form a basis, with the first *k* being the original vectors as desired.

4 QR Decomposition

If we take a look at equation (37) we can see that we can write \vec{v}_k as linear combination of only $\vec{q}_1, \ldots, \vec{q}_k$, and that this holds for all $1 \le k \le n$. This should remind us of a triangular structure similar to what you've seen in Gaussian elimination, and this will actually lead us to a new discovery.

Simplifying equation (37) with the notation from section 3.2, we get that the norm term $\left\| \vec{v}_k - \sum_{\ell=1}^{k-1} (\vec{q}_\ell^\top \vec{v}_k) \vec{q}_\ell \right\| = \|\vec{e}_k\|$. Then equation (37) for k = 1, 2, ..., n becomes

$$\vec{v}_1 = \|\vec{e}_1\|\,\vec{q}_1 \tag{49}$$

$$\vec{v}_2 = \|\vec{e}_2\| \, \vec{q}_2 + (\vec{q}_1^\top \vec{v}_2) \vec{q}_1 \tag{50}$$

:

⁴The reason for why we want to do this might not be immediately clear, but they make algebra much simpler due to the nice property that the inverse of an orthonormal matrix is its transpose. Additionally, we will use orthonormal bases a lot in the next few notes as they are core to several linear algebra algorithms.

Note 12: Orthonormalization @ 2021-10-27 22:24:59-07:00

$$\vec{v}_n = \|\vec{e}_n\| \, \vec{q}_n + \sum_{\ell=1}^{n-1} (\vec{q}_\ell^\top \vec{v}_n) \vec{q}_\ell \tag{51}$$

Converting the above equations to matrix multiplication form, we get

$$\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_n \end{bmatrix} = \begin{bmatrix} \vec{q}_1 & \dots & \vec{q}_n \end{bmatrix} \begin{bmatrix} \|\vec{e}_1\| & \vec{q}_1^\top \vec{v}_2 & \vec{q}_1^\top \vec{v}_3 & \dots & \vec{q}_1^\top \vec{v}_n \\ 0 & \|\vec{e}_2\| & \vec{q}_2^\top \vec{v}_3 & \dots & \vec{q}_2^\top \vec{v}_n \\ 0 & 0 & \|\vec{e}_3\| & \dots & \vec{q}_3^\top \vec{v}_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \|\vec{e}_n\| \end{bmatrix}$$
(52)

0

$$V = QR \tag{53}$$

0

This gives us a way to transform between the original vectors \vec{v}_i and the Gram-Schmidt orthonormalized vectors $\vec{q_i}$ through an upper-triangular square matrix R. Since R is upper-triangular and square with positive values on its diagonal, it has only positive eigenvalues and is thus invertible. This is another way to prove that $\operatorname{rank}(V) = \operatorname{rank}(Q)$, meaning the columns have the same span. An important thing to note is that every entry of R will already be computed by the Gram-Schmidt algorithm, so we can directly construct this matrix as we perform the algorithm with no extra calculations necessary.

An alternate view is since we can apply Gram-Schmidt to any set of linearly independent vectors, it shows us that any matrix V with linearly independent columns can be decomposed into a matrix with orthonormal columns Q and an upper-triangular square matrix R, and this is called the **QR Decomposition**.

Note that you can also define the QR decomposition for matrices that aren't linearly independent. However in this case, since Gram-Schmidt will skip over certain vectors, you will have less number of $\vec{q_i}$ vectors than $\vec{v_i}$ vectors, and thus you will get an R matrix that is now rectangular.

5 Speeding Up Least Squares

Now with these tools under our belt, we can go back to our initial issue of speeding up our system ID problems from Section 1. What we can now do is apply Gram-Schmidt orthonormalization to the columns of D_n , starting from the rightmost column to the leftmost, which will return a set of orthonormal vectors $\vec{q_0}, \vec{q_1}, \dots, \vec{q_n}$ that span the same subspaces as the columns in D_n .

$$Q_1 = \begin{bmatrix} \vec{q}_1 & \vec{q}_0 \end{bmatrix} \tag{54}$$

$$Q_2 = \begin{bmatrix} \vec{q}_2 & \vec{q}_1 & \vec{q}_0 \end{bmatrix}$$
(55)

$$Q_n = \begin{bmatrix} \vec{q}_n & \dots & \vec{q}_0 \end{bmatrix}$$
(56)

Since all the Q_i have orthonormal columns, we know $Q_i^{\top}Q_i = I$ so the least squares solution $(Q_i^{\top}Q_i)^{-1}Q_i^{\top}\vec{y}$ simplifies drastically to just $Q_i^{\top} \vec{y}$. We can then solve the least squares problems $Q_i \vec{w}_i \approx \vec{y}$ with

$$\vec{\hat{w}}_1 = Q_1^\top \vec{y} \tag{57}$$

÷

$$\vec{\hat{w}}_n = Q_n^\top \vec{y} \tag{58}$$

which is very easy computationally. Importantly, each successive problem only requires 1 more dot product with $\vec{q_i}$ and \vec{y} when compared to the last problem, as opposed to recalculating the entire least squares solution.

However, note that the parameters we get are some \vec{w}_i which are different than the original \vec{x}_i parameters due to changing the data from A_i to Q_i . Thus, we must have some post-processing step to convert each \vec{w}_i to \vec{x}_i . What is the relation between them? Well we know that since A_i and Q_i have the same column space, then the projection of \vec{y} onto their column space is the same so

$$A_i \vec{\hat{x}}_i = Q_i \vec{\hat{w}}_i \tag{59}$$

We now use the QR decomposition from (53) to say that $A_i = Q_i R_i$ so

$$A_i \vec{\hat{x}}_i = Q_i R_i \vec{\hat{x}}_i = Q_i \vec{\hat{w}}_i \tag{60}$$

$$R_i \vec{\hat{x}}_i = \vec{\hat{w}}_i \tag{61}$$

where we left multiplied the first equation by Q_i^{\top} to get the second equation. Now we just need to solve this $n \times n$ system of equations to get \vec{x}_i . But a key property is that R is upper-triangular and square, and so from our knowledge of Gaussian elimination, we just need to back-substitute all the equations starting from the bottom row. This will just take time proportional to the number of entries, so it will take $O(n^2)$ time which is faster than the time for a generic inverse calculation $O(n^3)$.

Overall, it's now much faster to try fit a one higher n + 1 dimension model if we want — instead of doing a whole $(D_{n+1}^{\top}D_{n+1})^{-1}D_{n+1}^{\top}\vec{y}$ calculation again in $O(n^3)$ time, it becomes one extra iteration of Gram-Schmidt to orthonormalize our new column to \vec{q}_{n+1} in O(nm) time, then 1 extra dot product to get the new entry of \vec{w}_{n+1} in O(m) time, and then applying the post-processing step by back-substituting R_{n+1} in $O(n^2)$ time. This gives an overall runtime of $O(n^2)$ which is much more efficient than the default $O(n^3)$.

Contributors:

- Ashwin Vangipuram.
- Anant Sahai.
- Jennifer Shih.
- Rachel Hochman.
- Vasuki Narasimha Swamy.
- Steven Cao.