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EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 14: Upper Triangulation

1 Motivation
When studying systems of linear differential equations, we have written them in the form

d

dt
x⃗ = Ax⃗, (1)

where A is a matrix of scalar real coefficients, and x⃗ is the state vector. To solve such systems, we have
developed a technique that involves diagonalizing A, solving for the state vector in the eigenbasis, and then
making a change of basis back to the identity basis to obtain the full solution.

While the above technique is very effective, it relies on A being diagonalizable. Unfortunately, this assump-
tion is not always true. For instance, consider

D =

[
1 1
0 1

]
. (2)

Computing its characteristic polynomial, we find that

det(D − λI) = (λ− 1)2, (3)

so its only root is λ = 1. But

Null(D − λI) = Null

[
0 1
0 0

] = span

[
1
0

], (4)

which is only one dimensional. Thus, D only has one eigenvector despite being 2 × 2, and so is not
diagonalizable. We call such matrices defective.

In this note, we will develop a new change of basis that has similar properties to diagonalization, but that
works for all matrices, allowing us to solve arbitrary systems of differential equations!

2 Upper-Triangular Form
In particular, we will aim to show that any square matrix A can be transformed, by a change of basis, into
the matrix

T =


λ1 ? ? · · · ?
0 λ2 ? · · · ?
0 0 λ3 · · · ?
...

...
...

. . .
...

0 0 0 · · · λn

 (5)
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where the λi are eigenvalues of T and T is in upper-triangular form. Notice that, since for defective matrices
there are fewer than n distinct eigenvalues, here we will repeat each eigenvalue in the diagonal in accordance
with its multiplicity. The multiplicity of an eigenvalue λi of a matrix A represents the number of times the
linear factor (λ − λi) appears in the characteristic polynomial of A. For instance, consider the defective
matrix

D =

[
1 1
0 1

]
. (6)

whose characteristic polynomial was shown above to be

PD(λ) = (λ− 1)2. (7)

Thus, we say that the eigenvalue λ = 1 of D has a multiplicity of 2 (even though the corresponding
eigenspace of D is only one-dimensional).

But does this construction make sense? We need to fill n spots on the diagonal of T with eigenvalues
repeated according to their multiplicity, so we need to ensure that the eigenvalues’ multiplicities sum to n.
The degree of the characteristic polynomial of an n× n matrix (such as A) is the highest power of λ in the
expression PA(λ) = det(A− λI). This determinant will have one factor of λ for each entry in the diagonal
of A− λI , and since A− λI is n× n, it will have n factors of λ. Thus the degree of PA(λ) is n. Therefore
the sum of the multiplicities of all distinct eigenvalues of A, and in general any n× n matrix, will be n, so
we can indeed produce the λi that we need for our desired form to make sense.

3 Computing Upper-Triangular Form
We wish to find a change of basis that converts an arbitrary n× n square matrix A into the form T . Let this
change of basis be represented by the columns v⃗i of the matrix U , such that

A = UTU−1 =

 | |
v⃗1 · · · v⃗n
| |



λ1 ? ? · · · ?
0 λ2 ? · · · ?
0 0 λ3 · · · ?
...

...
...

. . .
...

0 0 0 · · · λn


 | |
v⃗1 · · · v⃗n
| |


−1

. (8)

Right-multiplying by U to get rid of the inverse, we obtain

A

 | |
v⃗1 · · · v⃗n
| |

 =

 | |
v⃗1 · · · v⃗n
| |



λ1 ? ? · · · ?
0 λ2 ? · · · ?
0 0 λ3 · · · ?
...

...
...

. . .
...

0 0 0 · · · λn

 . (9)

Now, breaking this matrix down into a series of vector equations, we obtain the system

Av⃗1 = λ1v⃗1 (10)

Av⃗2 = (?)v⃗1 + λ2v⃗2 (11)

Av⃗3 = (?)v⃗1 + (?)v⃗2 + λ3v⃗3 (12)
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... (13)

Av⃗n = (?)v⃗1 + (?)v⃗2 + . . .+ (?)v⃗n−1 + λnv⃗n. (14)

Note that we use the symbol ? to represent different unknown quantities each time it is written, not always
the same value. Let’s also temporarily forget that the λi are meant to be the eigenvalues of our system, and
instead just treat them as arbitrary scalar coefficients.

Thus, we see that a change of basis that puts a matrix A into upper-triangular form is equivalent to con-
structing a basis {v⃗i} such that Av⃗i can be written as a linear combination of the vectors {v⃗1, v⃗2, . . . , v⃗i},
for all i.

One of these equations should immediately stand out – specifically, Av⃗1 = λ1v⃗1, since this is the equation
defining v⃗1 to be an eigenvector of A with eigenvalue λ1. So a necessary condition to write any square matrix
in upper-triangular form is that it must have at least one eigenvector, even if the matrix isn’t diagonalizable.
Since we are attempting to define our upper-triangularization procedure for every square matrix, we need
to prove that every square matrix has at least one eigenvalue. Otherwise, we would not have the necessary
condition for some matrices.

4 Existence of at least one eigenvector
Let’s try to prove that any square matrix A has at least one eigenvector. Recall that we solve for eigenvalues
and eigenvectors by considering the matrix A− λI , and searching for eigenvalues λ that caused A− λI to
have a nontrivial nullspace. To do so, we viewed the determinant det(A− λI) as a polynomial PA(λ) in λ,
and searched for its roots.

However, the Fundamental Theorem of Algebra tells us that every polynomial must have at least one distinct
(possibly complex) root!1 Thus, we will obtain at least one eigenvalue λ such that A − λI has a nontrivial
nullspace. By considering an element v⃗ ∈ Null(A− λI), we obtain

(A− λI)v⃗ = 0⃗ (15)

=⇒ Av⃗ − λIv⃗ =, 0⃗ (16)

=⇒ Av⃗ − λv⃗ =, 0⃗ (17)

=⇒ Av⃗ = λv⃗, (18)

so we have obtained an eigenvalue-eigenvector pair (λ, v⃗) for our matrix A, even if A were not diagonaliz-
able.

5 Guessing a basis
So we know how to compute some v⃗1 such that Av⃗1 = λ1v⃗1. But what about the remaining v⃗i for i ≥ 2?
To determine these v⃗i, we will make a guess. We will make a guess that the v⃗i not only form a basis, but
in fact form an orthonormal basis - in other words, that v⃗i ⊥ v⃗j for all i ̸= j, and that∥v⃗i∥ = 1 for all i.
Consider an arbitrary such orthonormal basis, starting with the known eigenvector v⃗1 (normalized to be of
magnitude 1) and constructing the remaining vectors using the Gram-Schmidt process. First, let’s place the

1The Fundamental Theorem of Algebra actually tells us that the polynomial has n complex-valued roots, but crucially some of
them may be the same. In particular they can all be the same, in which case we get one distinct eigenvalue.
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n− 1 arbitrarily chosen vectors, which we will denote as r⃗1, . . . , r⃗n−1 in a matrix Rn−1 defined as

Rn−1 =
[
r⃗1 r⃗2 · · · r⃗n−1

]
, (19)

so our full basis which turns A into an upper-triangular matrix will look like

Un =
[
v⃗1 Rn−1

]
, (20)

using block matrix notation. Notice that as the r⃗i are orthonormal, R⊤
n−1Rn−1 = In−1, where Ik repre-

sents the k-dimensional identity matrix. And since v⃗1 is orthogonal to each r⃗i, the whole matrix Un obeys
U⊤
n Un = In. This means that U−1

n = U⊤
n , a fact we will use in just a bit.

Does this basis U turn A into an upper-triangular matrix? Let’s find out, by computing the change of basis
and using the fact we just derived:

U−1
n AUn = U⊤

n AUn (21)

=
[
v⃗1 Rn−1

]⊤
A
[
v⃗1 Rn−1

]
(22)

=
[
v⃗1 Rn−1

]⊤ [
Av⃗1 ARn−1

]
(23)

=
[
v⃗1 Rn−1

]⊤ [
λ1v⃗1 ARn−1

]
(24)

=

[
v⃗⊤1

R⊤
n−1

] [
λ1v⃗1 ARn−1

]
(25)

=

[
v⃗⊤1 (λ1v⃗1) v⃗⊤1 (ARn−1)

R⊤
n−1(λ1v⃗1) R⊤

n−1(ARn−1)

]
(26)

=

[
λ1v⃗

⊤
1 v⃗1 v⃗⊤1 ARn−1

λ1R
⊤
n−1v⃗1 R⊤

n−1ARn−1

]
(27)

=

[
λ1 v⃗⊤1 ARn−1

λ1R
⊤
n−1v⃗1 R⊤

n−1ARn−1

]
. (28)

What does this matrix look like? Ideally, we’d like it to be upper-triangular, and so of the form
λ1 ? ? · · · ?
0 λ2 ? · · · ?
0 0 λ3 · · · ?
...

...
...

. . .
...

0 0 0 · · · λn

 . (29)

The top two blocks of U−1
n AUn look alright, since the top row of an upper triangular matrix does not have

to contain any zeros.

The bottom two blocks, however, might pose more of an issue. Specifically, comparing the two matrices
above, for U−1

n AUn to be upper triangular, λ1R
⊤
n−1v⃗1 = 0⃗, and R⊤

n−1ARn−1 must itself be an n − 1-
dimensional square upper triangular matrix.
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Let’s try to verify the first of our requirements. Recall that we chose the r⃗i to be orthonormal to v⃗1, so
r⃗⊤i v⃗1 = 0 for each i. So then

λ1R
⊤
n−1v⃗1 = λ1


− r⃗⊤1 −
− r⃗⊤2 −

...
− r⃗⊤n−1 −

 v⃗1 = λ1


r⃗⊤1 v⃗1
r⃗⊤2 v⃗1
...

r⃗⊤n−1v⃗1

 = λ1


0
0
...
0

 = 0⃗, (30)

as desired! Therefore, we can rewrite

U−1
n AUn =

[
λ1 v⃗⊤1 ARn−1

0⃗ R⊤
n−1ARn−1

]
. (31)

Unfortunately, recall that we chose the columns of Rn−1 essentially arbitrarily, so long as together with v⃗1
they formed an orthonormal basis for all of n-dimensional space. So there is no guarantee that R⊤

n−1ARn−1

is upper-triangular, meaning that we aren’t quite done yet.

Next, we’ll learn how to make a specific choice of Rn−1, and thus Un, so that we end up with an upper-
triangular matrix. We’ll study small-n cases, which will show us how the general case works.

6 Low-dimensional cases
The above approach doesn’t always take us to an upper-triangular form, but it certainly takes us closer to
one. When does it take us to upper-triangular form? Exactly when

R⊤
n−1ARn−1 (32)

is itself upper-triangular. And in what case is that matrix upper-triangular? Well, if it’s 1 × 1, then it is
upper-triangular by definition, so we’d be done. In other words, we know that when n = 2, the above
approach yields an upper-triangulation of the original matrix.

Let’s take the time to work this out algebraically. Let M2 be a 2 × 2 matrix. The above approach lets us
construct an orthonormal basis

U2 =
[
v⃗1 R1

]
(33)

such that

U−1
2 M2U2 =

[
λ1 v⃗⊤1 M2R1

0⃗ R⊤
1 M2R1

]
. (34)

But in the 2× 2 case, R1 is simply another unit vector, orthogonal to v⃗1. Let this vector be v⃗2, so

U2 =
[
v⃗1 v⃗2

]
. (35)

Then we see that

U−1
2 M2U2 =

[
λ1 v⃗⊤1 M2v⃗2
0⃗ v⃗⊤2 M2v⃗2

]
. (36)

Since all the components of the above matrix are in fact 1 × 1, we have expressed M2 in upper-triangular
form!
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This step resolved quickly, on account of all 1 × 1 matrices being upper triangular. This stops being the
case for 2 × 2 matrices. So, let’s look at the next case: when n = 3. Consider some 3 × 3 matrix M3, and
construct an orthonormal basis

U3 =
[
v⃗1 R2

]
(37)

such that

U−1
3 M3U3 =

[
λ1 v⃗⊤1 M3R2

0⃗ R⊤
2 M3R2

]
. (38)

As mentioned before, since R⊤
2 M3R2 is not necessarily upper-triangular, we run into a problem with our

solution.

But wait! R⊤
2 M3R2 is a 2× 2 matrix. And we just saw how to upper-triangularize arbitrary 2× 2 matrices!

Let
M2 = R⊤

2 M3R2 (39)

and upper-triangularize it as T2 = U−1
2 M2U2 for some orthonormal basis U2 and upper-triangular matrix

T2.

Ideally, we’d be able to combine our “partial” upper-triangularization of M3 with this complete upper-
triangularization of M2 in order to obtain an upper-triangularization of M3 itself. Making substitutions, we
might conjecture that an upper-triangularization might look something like[

λ1 ?⃗
⊤

0⃗ U−1
2 M2U2

]
=

[
λ1 ?⃗

⊤

0⃗ U⊤
2 R⊤

2 M3R2U2

]
. (40)

Notice that we don’t really care about the values of the elements above the diagonal, since they don’t affect
whether or not our result is upper-triangular, so we just denote them as ?.

Can we construct a change of basis U3, in terms of U2, to write M3 in the above form? Well, observe that
the above form can be further rewritten as[

λ1 ?⃗
⊤

0⃗ (R2U2)
⊤M3(R2U2)

]
. (41)

In other words, it looks very much like how U3 acted on M3, except with R2U2 instead of just R2. Thus,
based on what the above U3 looked like, we can conjecture that the alternative change of basis

U3 =
[
v⃗1 R2U2

]
(42)

will rewrite A in upper-triangular form. Let’s check this out and see if it works. Recall that we constructed

U2 =
[
v⃗2 v⃗3

]
, (43)

where v⃗2 is an eigenvector of M2 with eigenvalue λ2 and v⃗3 ⊥ v⃗2. (Notice that we have incremented
subscript indices to avoid ambiguity.) Thus, our new U3 looks like

U3 =
[
v⃗1 R2U2

]
=

[
v⃗1 R2v⃗2 R2v⃗3

]
. (44)

We wish to compute U−1
3 M3U3 and verify that it is upper-triangular. To do so, we need to compute U−1

3 .
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How did we do this when we considered that U3 =
[
v⃗1 R2

]
? Well, we looked at each column, and showed

(albeit briefly) that the set of columns is orthonormal, by appealing to the Gram-Schmidt construction. Since
any orthonormal matrix U obeys U⊤U = I , we obtained U⊤ = U−1. So we were able to say U−1

3 = U⊤
3 .

Let’s do the same thing here. Observe that the second and third columns of U3, R2v⃗2 and R2v⃗3, both lie in
the column space of R2, which by construction is orthogonal to the first column v⃗1. Furthermore, we see
that the inner product of the second and third columns is

(R2v⃗2)
⊤(R2v⃗3) = v⃗⊤2 (R

⊤
2 R2)v⃗3 (45)

= v⃗⊤2 I2v⃗3 (46)

= v⃗⊤2 v⃗3 (47)

= 0, (48)

relying on the fact that R⊤
2 R2 = I2 as R2 is orthonormal, and v⃗⊤2 v⃗3 = 0 as the two vectors were constructed

to be orthogonal. Thus, all the columns of U3 are mutually orthogonal. To verify that they are of unit
magnitude, we can simply compute their squared magnitude through inner products, where we see that

v⃗⊤1 v⃗1 = 1 (49)

(R2v⃗2)
⊤(R2v⃗2) = v⃗⊤2 R

⊤
2 R2v⃗2 = v⃗⊤2 v⃗2 = 1 (50)

(R2v⃗3)
⊤(R2v⃗3) = v⃗⊤3 R

⊤
2 R2v⃗3 = v⃗⊤3 v⃗3 = 1, (51)

since v⃗1, v⃗2, and v⃗3 were all constructed to be of unit magnitude.

Therefore, we have shown that U3 forms an orthonormal basis, so U−1
3 = U⊤

3 . Thus, using similar tech-
niques to what we did in the “partial” upper-triangularization, we can rewrite M3 in this new basis as

U−1
3 M3U3 = U⊤

3 M3U3 (52)

=

[
v⃗⊤1

(R2U2)
⊤

]
M3

[
v⃗1 R2U2

]
(53)

=

[
v⃗⊤1

(R2U2)
⊤

] [
λ1v⃗1 M3R2U2

]
(54)

=

[
λ1 ?⃗

U⊤
2 (R⊤

2 λ1v⃗1) U⊤
2 R⊤

2 M3R2U2

]
(55)

=

[
λ1 ?⃗

0⃗ U⊤
2 M2U2

]
(56)

=

λ1 ? ?
0 λ2 ?
0 0 ?

 , (57)

so we have successfully placed M3 in upper-triangular form!

7 Induction
Let’s take a quick step back. What have we done so far?
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First, we developed a fairly intuitive change of basis that took an arbitrary n×n matrix to a “partial” upper-
triangular form. Then, we saw that in the 2 × 2 case, this change of basis actually took our matrix to the
final upper-triangular form. And now we’ve just seen that we can use our technique to upper-triangularize
2× 2 matrices to upper-triangularize arbitrary 3× 3 matrices as well.

What’s next? Well, notice how our approach centers around resolving the case for n × n dimensions by
solving the problem for (n − 1) × (n − 1) matrices. If we were writing a computer program to upper-
triangularize matrices, we could have used recursion. To make sure our program is correct, we would like to
make sure that, assuming we can upper-triangularize (n−1)× (n−1) matrices, we can upper-triangularize
n× n matrices – that way, our recursive calls work as intended.

To formalize this, we will use a mathematical principle called induction, which will be covered far more
extensively in other classes such as CS 70. Right now, we’re just using it to make our recursion arguments
mathematically precise.

The principle of induction says in summary that if we have some statement P (n), we only need to prove
two things to prove P (n) is true for all n:

• P (1) is true, or more generally P (n0) is true for some n0 (base case).

• If P (n− 1) is true (inductive hypothesis) then P (n) is true (inductive step).

Then for every n ≥ 1 (or n ≥ n0), P (n) is true. Note that in the second bullet, we first assume P (n− 1) is
true and then show that P (n) is true; in particular, we don’t say anything about when P (n− 1) is false.

This explanation was a bit abstract, so let’s connect it to our problem. We consider P (n) to be the statement
“every n × n matrix can be upper-triangularized”. Saying P (n) is true for all n is like saying “every
n × n matrix can be upper-triangularized for all n”, or equivalently “every square matrix can be upper-
triangularized”. And we need to prove that P (1) is true (which we did; we showed, very briefly, that all
1 × 1 matrices are upper-triangular). The last thing we need to show is that if P (n − 1) is true then P (n)
is true. More explicitly, given that we can upper-triangularize (n− 1)× (n− 1) dimensional matrices, we
want to show that we can upper-triangularize n× n matrices.

Consider an arbitrary n × n matrix A. We know that we can produce an unit eigenvector of A v⃗1 with
eigenvalue λ1 that, along with the columns of the matrix Rn−1 (produced using Gram-Schmidt), form an
orthonormal basis of n-dimensional space.

In analogy with our approach for the case of n = 3, we then consider the (n− 1)× (n− 1) matrix

Mn−1 = R⊤
n−1ARn−1 (58)

and, using our inductive hypothesis, produce an orthonormal matrix Un−1 such that

U−1
n−1Mn−1Un−1 (59)

is upper-triangular.

Then, we let
Un =

[
v⃗1 Rn−1Un−1

]
. (60)

Before, to compute U−1
3 , we showed that U3 was orthonormal by considering each pair of its columns.

This approach is not quite going to work, since we have n columns, not just 3. Instead, we show that
U⊤
n Un = In, which implies that U⊤

n = U−1
n . This equation is what we originally wanted. This also implies
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that the columns of Un are orthonormal, since the entries of U⊤
n Un (and in general any matrix) are the inner

products of the respective columns of Un.

This can be done as follows:

U⊤
n Un =

[
v⃗⊤1

(Rn−1Un−1)
⊤

] [
v⃗1 Rn−1Un−1

]
(61)

=

[
v⃗⊤1 v⃗1 v⃗⊤1 Rn−1Un−1

U⊤
n−1R

⊤
n−1v⃗1 U⊤

n−1R
⊤
n−1Rn−1Un−1

]
. (62)

Let’s look at each of the components of the above matrix. Since it was chosen to be a unit vector, v⃗⊤1 v⃗1 =
1. As Rn−1 was constructed using Gram-Schmidt to have its columns be orthogonal to v⃗1, we have that
v⃗⊤1 Rn−1 = 0⃗⊤ and that R⊤

n−1v⃗1 = 0⃗.

Looking at the bottom-right term, we recall that Rn−1 was constructed to be an orthonormal matrix, so
R⊤

n−1Rn−1 = In−1. Furthermore, Un−1 was constructed to be an orthonormal basis for Mn−1, so U⊤
n−1Un−1 =

In−1. Thus,
U⊤
n−1(R

⊤
n−1Rn−1)Un−1 = U⊤

n−1In−1Un−1 = U⊤
n−1Un−1 = In−1, (63)

canceling out the middle terms first. Putting all of this together, we see that

U⊤
n Un =

[
1 0⃗⊤

0⃗ In−1

]
= In, (64)

so Un is indeed orthonormal, as we expected.

Now that we have shown Un is orthonormal, we can write U−1
n = U⊤

n . Reexpressing A in this change of
basis, we see that

U−1
n AUn = U⊤

n AUn (65)

=

[
v⃗⊤1

(Rn−1Un−1)
⊤

]
A
[
v⃗1 Rn−1Un−1

]
(66)

=

[
v⃗⊤1

(Rn−1Un−1)
⊤

] [
Av⃗1 ARn−1Un−1

]
(67)

=

[
v⃗⊤1

(Rn−1Un−1)
⊤

] [
λ1v⃗1 ARn−1Un−1

]
(68)

=

[
λ1v⃗

⊤
1 v⃗1 ?⃗

U⊤
n−1R

⊤
n−1λ1v⃗1 U⊤

n−1R
⊤
n−1ARn−1Un−1

]
(69)

=

[
λ1 ?⃗

λ1U
⊤
n−1(R

⊤
n−1v⃗1) U⊤

n−1R
⊤
n−1ARn−1Un−1

]
(70)

=

[
λ1 ?⃗

0⃗ U⊤
n−1Mn−1Un−1

]
. (71)

Since U⊤
n−1Mn−1Un−1 is upper-triangular, so is U−1

n AUn, so we have successfully upper-triangularized an
arbitrary n × n matrix A with an orthonormal change of basis by applying the inductive hypothesis. Thus
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we completed the inductive step.

By induction, we can therefore upper-triangularize arbitrary square matrices using orthonormal changes of
basis, which is what we had aimed to prove! Awesome!

If we were to write down this algorithm in its entirety, it would look something like the following.

Inputs

• An n× n matrix A.

Outputs

• An n× n orthonormal matrix Un such that U⊤
n AUn is upper-triangular.

Upper-Triangularization Procedure

(a) If A is 1× 1, return the 1× 1 orthonormal matrix Un =
[
1
]
. (This is the base case.)

(b) If A is larger than 1× 1:

i. Find an eigenvector-eigenvalue pair v⃗1, λ1 of A.

ii. Produce n− 1 columns in Rn that are orthogonal to v⃗1 by running the Gram-Schmidt algorithm
(say, on the columns of

[
v⃗1 In

]
). Put them as the columns of the matrix Rn−1.

iii. Set Mn−1 = R⊤
n−1ARn−1.

iv. Recursively upper-triangularize Mn−1 to get Un−1 such that U⊤
n−1Mn−1Un−1 is upper-triangular.

v. Set Un =
[
v⃗1 Rn−1Un−1

]
and return it.

8 Schur Decomposition
There’s are still a couple loose ends to clear up, however. Recall that we had initially hoped for the elements
along the main diagonal of T , the upper-triangularization of A, to be the eigenvalues of A. But though our
construction made λ1 an eigenvalue, the remaining λi were eigenvalues of different matrices, and we have
not yet seen whether they are also eigenvalues of A itself.

To see that that is in fact the case, recall that we have just shown that we can write

A = UTU−1 =

 | |
v⃗1 · · · v⃗n
| |



λ1 ? ? · · · ?
0 λ2 ? · · · ?
0 0 λ3 · · · ?
...

...
...

. . .
...

0 0 0 · · · λn


 | |
v⃗1 · · · v⃗n
| |


−1

, (72)

where the λi are not necessarily the eigenvalues of A. Consider a particular λi. To show that it is an
eigenvalue of A, we must show that det(A− λiI) = 0. Recalling that det(AB) = det(A) det(B), we have
that

det(A− λiI) = det
(
UTU−1 − λiUU−1

)
(73)
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= det
(
U(T − λiI)U

−1
)

(74)

= det(U) · det(T − λiI) · det
(
U−1

)
. (75)

Let’s look at each of the elements of this product individually. First, observe that

det(U) · det
(
U−1

)
= det

(
UU−1

)
= det(I) = 1, (76)

so we can cancel the determinant of U with the determinant of its inverse, to write

det(A− λiI) = det(T − λiI). (77)

In other words, we have shown that the characteristic polynomial of A remained unchanged under a change
of basis. Now, observe that

T − λiI =


λ1 − λi ? ? · · · ?

0 λ2 − λi ? · · · ?
0 0 λ3 − λi · · · ?
...

...
...

. . .
...

0 0 0 · · · λn − λi

 . (78)

Thus, the ith pivot element of the above matrix must be 0, since it will equal λi − λi = 0. If we have
an upper-triangular matrix with only n − 1 nonzero pivots, then it has linearly dependent columns, so its
determinant is zero. Thus,

det(T − λiI) = 0 =⇒ det(A− λiI) = 0, (79)

so each λi is an eigenvalue of A, as expected! This way of representing A is known as the Schur Decompo-
sition of A.

9 Complex Inner Products
There’s one subtlety that we skipped over in the above proof. Specifically, we assumed throughout that the
notions of orthogonality and inner products were defined on our vector spaces. But how do you take the
inner product of two complex-valued vectors? If you try to reuse the definition of the dot product, you’ll get
some weird results that cause our understanding of these concepts to break down. For instance,∥∥∥∥∥∥

[
j
1

]∥∥∥∥∥∥
2

=

[
j
1

]
·

[
j
1

]
= −1 + 1 = 0, (80)

which doesn’t seem to make sense, since only the zero vector should have a norm of zero.

For now, we should assume that we are working in the vector space of reals Rn using the standard definition
of the dot product. This, however, requires all the λi to be real, which may not always be the case. For now,
we will make that assumption, though in Note 2j we will see a small generalization of the dot product which
will ensure our above result is true in all cases. In any case, the adjustment to our proof is minimal, given
this more general notion of the inner product.
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10 The Spectral Theorem
We will now use our decomposition to obtain some interesting results about diagonalizing real, symmetric
matrices.

First, we claim that the eigenvalues of a real, symmetric matrix are all themselves real. To prove it, let’s
consider a real, symmetric n×n matrix A = A⊤ and an eigenvalue λ of A. By the definition of eigenvectors,
there exists some nonzero vector x⃗ such that

Ax⃗ = λx⃗. (81)

To show λ is real, we’d like to get a result that looks like λ = λ. So, striking out blindly, we can take the
conjugate to get λ involved somehow, to obtain

Ax⃗ = λx⃗. (82)

Notice that A = A, since we assumed A was real. Now, let’s try to take advantage of A’s symmetric nature,
by taking the transpose and using the fact that A = A⊤, to obtain

x⃗
⊤
A = x⃗

⊤
λ. (83)

At this point we can post-multiply both sides by x⃗ to obtain

x⃗
⊤
Ax⃗ = λx⃗

⊤
x⃗ (84)

=⇒ λx⃗
⊤
x⃗ = λx⃗

⊤
x⃗ (85)

=⇒ (λ− λ)x⃗
⊤
x⃗ = 0. (86)

So by basic arithmetic, either λ = λ, or x⃗
⊤
x⃗ = 0. But since we chose x⃗ to be a nonzero vector, the former

equality must be the one that is true, so λ is real, as desired.

Now, we will make a stronger claim. We assert that, not only are all the eigenvalues of A real, but that A
can be diagonalized, meaning that it has n linearly independent eigenvectors. Furthermore, we claim that
these eigenvectors can be chosen such that they are all orthonormal.

What is our goal? We wish to show that we can express

A = QΛQ⊤, (87)

where Q is an orthonormal matrix whose columns are the eigenvectors of A, and Λ is a diagonal matrix
containing the eigenvalues of A.

Notice that, since Λ is a diagonal matrix, it is also upper-triangular, with the elements along its diagonal
being the eigenvalues of A. Thus, our desired diagonalization of A is also a Schur decomposition of A.

So the first question to ask should be: can we construct a Schur decomposition of an arbitrary real, symmetric
matrix A? The critical assumption needed when doing so was that all the λi were real produced during the
induction, as otherwise our arguments related to orthogonality broke down. Let’s look at our procedure and
try to show that this is the case.

First, consider λ1. λ1 was chosen to be an eigenvalue of A. But since all the eigenvalues of A are real (since
A is symmetric, using the result from above), we know that λ1 is real. Great!
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Next, let’s look at λ2. Looking at the induction, λ2 was chosen to be an eigenvalue of Mn−1 = R⊤
n−1ARn−1,

where Rn−1 was an n×(n−1) orthonormal matrix constructed in a particular fashion. Right now, the exact
construction of Rn−1 isn’t super important. What is important is that, as A = A⊤,

M⊤
n−1 = (R⊤

n−1ARn−1)
⊤ = R⊤

n−1A
⊤Rn−1 = R⊤

n−1ARn−1 = Mn−1, (88)

so Mn−1 is symmetric. And so, as λ2 is an eigenvalue of the symmetric matrix Mn−1, it is itself real. This
looks promising!

In a similar manner, λ3 is an eigenvalue of Mn−2 = R⊤
n−2Mn−1Rn−2, which is symmetric, so λ3 is itself

real. And this recursive argument can be continued in a similar fashion to show that all the λi are real!
Awesome2!

Since all the λi are real, the induction involved in the Schur form proof works out, so we can write

A = UTU⊤, (89)

where U is an orthonormal matrix and T is upper-triangular. Our goal is to show that T = Λ - in other
words, that T is in fact diagonal! Since we know that T is already upper-triangular, one way of doing this
would be to show that

T = T⊤, (90)

so the “upper” part of T consists entirely of zeros as well, so it is diagonal. How can we get T⊤ from our
upper-triangular decomposition? We might as well just blindly take the transpose of the entire equation, just
so we get the desired term somewhere. Doing so, we obtain

A⊤ = UT⊤U⊤. (91)

But since A is symmetric, A = A⊤, so we can write

A = UT⊤U⊤. (92)

So we have shown that, when working in the basis of U , A becomes both T and T⊤? How can this be true?
The only way for this to be possible is if

T = T⊤, (93)

as desired! Thus, we have shown that we can write

A = UTU⊤, (94)

where T is a diagonal matrix made up of A’s eigenvalues, and U is an orthonormal matrix. So we have
diagonalized A! This completes the proof of what is known as the real spectral theorem.

11 Connection to Stability
Now that we have a connection between upper triangularization and diagonalization, we can start expanding
on previous concepts and algorithms. Chiefly, we used diagonalization to get to a diagonal system of scalar
equations we could easily solve, before converting back to the original basis. For a lot of these problems,
we can now also use upper triangularization to get to a solvable system in the case that the matrices we are

2We could alternatively frame this argument using induction, like we did when deriving Schur form, if you’re more comfortable
with that. But both approaches are fundamentally equivalent and lead to the same result.
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given are not diagonalizable.

One derivation where this is important is the theorem that for a discrete-time system

x⃗[i+ 1] = Ax⃗[i] +Bu⃗[i] + w⃗[i], (95)

the system is stable if and only if all eigenvalues λ of A have|λ| < 1.

We proved this theorem in Note 10 in the case where A is diagonalizable. Now let us suppose A is not
diagonalizable. But A is a square matrix, and hence it is upper-triangularizable. Let A = UTU⊤ be an
upper-triangularization of A. Rearranging and remembering that U⊤ = U−1, we write

x⃗[i+ 1] = Ax⃗[i] +Bu⃗[i] + w⃗[i] (96)

= UTU⊤x⃗[i] +Bu⃗[i] + w⃗[i] (97)

=⇒ U⊤x⃗[i+ 1] = TU⊤x⃗[i] + U⊤Bu⃗[i] + U⊤w⃗[i] (98)

=⇒ ⃗̂x[i+ 1] = T⃗̂x[i] + B̂u⃗[i] + ⃗̂w[i]. (99)

where ⃗̂x = U⊤x⃗, B̂ = U⊤B, and ⃗̂w = U⊤w⃗. What does this system look like? Writing it out in matrix
form, 

x̂1[i+ 1]
...

x̂n[i+ 1]

 =


λ1 ? · · · ?
0 λ2 · · · ?
...

...
. . .

...
0 0 · · · λn



x̂1[i]
...

x̂n[i]

+


(B̂u⃗[i])1

...

(B̂u⃗[i])n

+


ŵ1[i]
...

ŵn[i]

 . (100)

Looking at the last row, we see an equation that we already know how to analyze:

x̂n[i+ 1] = λnx̂n[i] + (B̂u⃗[i])n + ŵn[i]. (101)

Thus, this one-dimensional system is BIBO stable if and only if|λn| < 1.

Now looking at the penultimate row, we get another equation:

x̂n−1[i+ 1] = λn−1x̂n−1[i] + (?) · x̂n[i] + (B̂u⃗[i])n−1 + ŵn−1[i] (102)

= λn−1x̂n−1[i] + (B̂u⃗[i])n−1 + (ŵn−1[i] + (?) · x̂n[i]). (103)

Why did we group the terms like this? Well, it’s because we already know the value of
∣∣x̂n[i]∣∣. So we can

wrap x̂n[i] into our disturbance and still know that the whole term is bounded, provided|λn| < 1. Then this
one-dimensional system is BIBO stable if and only if|λn−1| < 1.

Now that we’ve done a couple "base cases", let’s tackle the general case. Suppose that |λn| < 1,|λn−1| <
1, . . . ,|λn−k+1| < 1 for some k < n. Looking at the (n− k)th row, we see that

x̂n−1[i+ 1] = λn−kx̂n−k[i] + (B̂u⃗[i])n−k + ŵn−k[i] (104)

+ (?) · x̂n−k+1[i] + (?) · x̂n−k+2[i] + · · ·+ (?) · x̂n[i] (105)

= λn−kx̂n−k[i] + (B̂u⃗[i])n−k +

ŵn−k[i] +

k−1∑
j=0

(?) · x̂n−j [i]

 (106)

where each of the question marks correspond to different constants – namely, the nonzero entries in the
(n − k)th row of T . Since |λn| < 1,|λn−1| < 1, . . . ,|λn−k+1| < 1, each of x̂n, . . . , x̂n−k+1 is bounded so
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long as ̂⃗w is bounded. Thus the "aggregate disturbance" term is bounded so long as ⃗̂w is bounded. Thus this
(still one-dimensional) system for x̂n−k is BIBO stable if and only if|λn−k| < 1.

Continuing on with this process until k = n − 1, we see that the implication "if ⃗̂w is bounded then ⃗̂x is
bounded" holds if and only if |λ1| < 1, . . . ,|λn| < 1. This means that our ⃗̂x system is BIBO stable if and
only if|λ1| < 1, . . . ,|λn| < 1.

To finish off, we can use the proof from Note 10 to assert that x⃗ is bounded if and only if V x⃗ is bounded,
for all sequences x⃗ and matrices V . Applying this to ⃗̂x = U⊤x⃗ and ⃗̂w = U⊤w⃗, we see that "if w⃗ is bounded
then x⃗ is bounded" holds if and only if|λ1| < 1, . . . ,|λn| < 1. This means that our x⃗ system is BIBO stable
if and only if|λ1| < 1, . . . ,|λn| < 1.

This is a fully general proof of necessary/sufficient conditions for BIBO stability in discrete time!

Concept Check: Formalize the above argument into an inductive proof. That is, identify the inductive claim
and variable to induct on, the base case, and the inductive step. You may want to re-write the proof so that
it more closely mirrors an inductive format.

Hint: Your claim could be something like “for a given k, ⃗̂xn−k is bounded if and only if|λn| < 1,|λn−1| < 1,
. . ., |λn−k| < 1”.

12 [Optional] Applications in Precision Computing
Sometimes when we are solving problems or designing algorithms (say for stability or controllability), we
want to do coordinate changes to bases in which we get easily solvable systems.

Previously, we used eigenvector bases for this. Now, we are allowed to use upper-triangularization bases.
It turns out that a lot of the time, using the upper-triangularization basis is better, in the sense that our
computation is more numerically stable. Let’s try to briefly unpack why that is.

For notation’s sake, let’s say that we’re working with a matrix A ∈ Rn×n.

Right off the bat, we re-emphasize that sometimes A is not diagonalizable. In this case, upper-triangularization
is the only method we have developed so far that actually works for A, and so it is the best method to use by
default.

Now let’s suppose that A is diagonalizable. Let A = V ΛV −1 be the representation of A in the eigenvector
basis V – the diagonalization of A – and let A = UTU⊤ be the representation of A in the upper triangular
basis – the upper-triangularization of A.

One key difference we can see in these formulas is that in the diagonalization representation, we need to
compute V and V −1, while in the upper triangularization representation, we only need to compute U and
U⊤ (which is really easy to compute given U ). This is indeed the difference we are looking for.

We will now try to justify why computing V −1 is numerically instable. We do this by considering a range
of scenarios (say configurations of A).

One extreme is when A is symmetric. Then the eigenvectors of A are orthonormal. If they are normalized,
then V is a matrix with orthonormal columns and rows, so that V −1 = V ⊤. In this case, we have shown
earlier in the note that the upper triangularization is exactly equal to the diagonalization, so there is no
advantage to be gained by either side in terms of numeric stability.

The other extreme is when A is not diagonalizable. Then multiple eigenvectors of A are not distinct – in
particular, they align perfectly. In this case V is singular, and thus non-invertible, since two of the columns
of V are identical. Since we can only do upper-triangularization, this is the better method.
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We can make our point by considering matrices A that are "close to non-diagonalizable" – that is, A with
eigenvector matrix V which is "nearly singular". That is, two eigenvectors of A are almost completely
aligned. We saw such matrices in the critically damped case for RLC circuits, for example.

In this case, inverting the V matrix and separating the aligned eigenvectors is difficult, and indeed numer-
ically unstable. Why is this the case? One can make this argument precise using the notion of condition
number, which is out of scope for the class. But, heuristically, here is what happens.

When we find a matrix inverse, conceptually it’s similar to finding a solution x⃗ to V x⃗ = y⃗. Since there are
almost-aligned eigenvectors in V , there is at least one direction in Rn for which all of the columns of V have
really small components in that direction (because there are n directions and effectively n − 1 vectors to
use). If y⃗ points into that problematic direction, then the coordinates of x⃗ (i.e., the coefficients of the linear
combination of the columns of V ) will, more often than not, have to be very large to push the vectors in V
to reach y⃗, while cancelling out in all other directions to perfectly equal y⃗ – even for benign, generic y⃗ such
as unit vectors! Moreover, very similar values of y⃗ (such as a "true" value of y⃗ compared to a computer
representation of y⃗), lead to very different values for x⃗! Since x⃗ has crazy behavior and x⃗ = V −1y⃗, it is
reasonable to think of V −1 as being numerically unstable.

On the other hand, upper-triangularization is like a boon, in the sense that when we compute it, we never
have to take matrix inverses. All we have to do is take matrix transposes, use Gram-Schmidt3, and we’re
in business – we get a fully orthonormal basis that turns our system into one that’s easily solvable. This
process is more numerically stable, since our change-of-basis is orthonormal and we never have to take an
inverse anywhere.

This is the crux of why upper-triangularization is more numerically stable than diagonalization. This type
of analysis can be explored more in e.g., EE 127, and Math 128.

Contributors:

• Druv Pai.

• Rahul Arya.

• Anant Sahai.

3Gram-Schmidt is also not great as a numerical linear algebra tool, because it suffers from a phenomenon called catastrophic
cancellation. The gist of it is that we end up subtracting a lot of vectors, end up with vectors that should be – but are not quite, on
our computer, due to computer arithmetic limitations – zero, and then we normalize it and get a unit vector in an essentially random
direction. Using this vector in our computation can lead to crazy results. There are other methods to do orthonormalization, such as
one of many algorithms for the QR decomposition, although they are more technically complex. All of this footnote is out of scope
for the class.
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