
Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 15: Deriving the SVD

1 Minimum Energy Control
Recall from our understanding of control that any n-dimensional discrete-time system with state equation

~x[i+ 1] = A~x[i] +B~u[i] (1)

can be controlled to reach any desired state from any other in at most n time steps if and only if the
controllability matrix

Cn =
[
B AB A2B · · · An−1B

]
(2)

is of full row rank.

Now assume that our system is controllable. For simplicity, let’s consider the case of scalar control only,
so B is in fact a column vector. Then, we know that, starting at an initial state ~x[0] = ~0, we can reach any
target state ~x? in n time steps by applying the control

~un =

u[n− 1]
u[n− 2]

...
u[0]

 (3)

chosen such that

~x? = ~x[n] =
[
B AB A2B · · · An−1B

]

u[n− 1]
u[n− 2]

...
u[0]

 = Cn~un. (4)

In the case of scalar control, Cn is an n × n matrix (of full rank, by our assumption of controllability) and
so is invertible. Thus, we can uniquely choose our control inputs to be

~un = C−1n ~x?. (5)

However, what if we didn’t want to arrive at the state ~x? after n time steps, but only need to be there after
some longer duration t > n? Then our final state will now be ~x∗ = ~x[t] = Ct~ut where Ct which is a n× t
wide matrix. Since n < t we have an underdetermined system and so there are many possibilities for our
control inputs ~ut. In particular, notice that for the first t−n steps, we can apply any controls we want, since
the final n steps will always be sufficient to bring us to ~x? from wherever we might have ended up.

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

So are we done? Not quite. Imagine the linear system of our robot car from lab, and consider the problem
of bringing it to a particular state (i.e. assigning particular values to the wheel velocities) at a certain time.
One way would be to apply a steady input to gradually ramp up the wheel velocities, so we reach the target
state at the desired time. Another way, however, could be to apply large random inputs, accelerating and
decelerating each wheel, until just before the target time t, at which point we would apply large controls
to set the wheel velocities to their desired values. Though both approaches accomplish the same goal, the
former should seem more “natural” than the latter.

More generally, in the case of arbitrary controllable linear systems, out of all the inputs ~u that take us to
~x∗, we will aim to choose the inputs that minimize some cost function, which expresses how “unnatural”
or “bad” our inputs are. In our robotic car context, it would make sense to minimize the current and power
drawn from the battery, which is directly correlated with the PWM input to our system. In this case, a
plausible choice for this cost function would be the norm‖~u‖ of the inputs. With this cost function, the first
example of applying steady inputs has a smaller norm than the large, randomly varying inputs of the second
example, suggesting that this definition of the cost function is in accordance with our intuition. The problem
of computing the control input that reaches a goal state while minimizing the norm of the inputs is known
as minimum energy control or alternatively the minimum norm solution for the system of equations.

2 Minimum Norm Solution
The problem of minimum energy control is really just an example of solving underdetermined systems. We
will consider the general case where we have an A matrix that is n× t where n < t and we want to solve

A~w = ~y (6)

for some parameters ~w. We assume that ~y ∈ Col(A) because otherwise, the equation is not satisifed. But
since A is wide, it may have a null space, so it is possible for infinitely many solutions ~w to exist. Thus, we
wish to pick the solution with minimum norm as the best solution.

Let’s try to make sense of this problem by the geometric viewpoint. Let ~w0 be a particular solution to the
above equation (that is not necessarily of minimum norm), and recall that the null space of A is a subspace
of t-dimensional space. Furthermore, observe that for any vector ~z ∈ Null(A), ~w0 + ~z is a solution to our
equation, since

A(~w0 + ~z) = A~w0 +A~z = A~w0 = ~y. (7)

Furthermore, from the same calculation, any possible solution ~w where A~w = ~y can be written in the form
~w0 + ~z for some ~z ∈ Null(A). Intuitively, we don’t want to waste any of our parameter vector ~w on parts
which live in Null(A) since they are not affecting the result. Thus the control input ~w with minimum norm
should be one that is entirely orthogonal to Null(A). This would seem to be analogous to what we saw when
studying least squares, where again we were interested in choosing a point on a subspace such that the error
vector was orthogonal to said subspace.

Let’s try to prove this rigorously. Imagine that we had some orthonormal basis

~v1, ~v2, . . . , ~vt (8)

of our t-dimensional space of parameters, ordered such that the first r vectors ~v1, . . . , ~vr form a basis for
those vectors orthogonal to Null(A), and the remaining t− r vectors ~vr+1, . . . , ~vt form a basis for Null(A).
We will worry about constructing this basis explicitly later – for now, let’s just assume that it exists. (It

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

must exist since we can get a basis for the nullspace using 16A techniques and then orthonormalize it using
Gram-Schmidt. Then, we can extend it to a full basis for the space again using Gram-Schmidt.)

Consider our ~w0 expressed in this orthonormal basis, as follows:

~w0 = α1~v1 + α2~v2 + · · ·+ αt~vt = V ~α. (9)

Observe that the norm of ~w0 is

‖~w0‖ =
√
~w>0 ~w0 =

√
~α>V >V ~α (10)

=
√
~αT ~α =‖~α‖ , (11)

since the ~vi are orthonormal, so V >V = I .

Now, observe that in this basis, any ~z ∈ Null(A) can be represented as

~z = βr+1~vr+1 + βr+2~vr+2 + . . .+ βt~vt, (12)

since (by definition) it has components only in the the null space of A. Thus, we can write any solution
~w = ~w0 + ~z as

~w = ~w0 + ~z = α1~v1 + α2~v2 + . . .+ αr~vr + (αr+1 + βr+1)~vr+1 + . . .+ (αt + βt)~vt. (13)

In a similar manner to what we did before, we see immediately that the norm of this expression is

‖~w‖ =
√
α2
1 + α2

2 + . . .+ α2
r + (αr+1 + βr+1)2 + . . .+ (αt + βt)2. (14)

To minimize the norm of ~w, therefore, we should set βi = −αi for all valid i > r. Therefore, our minimum
energy control must be

~w = ~w0 + ~z (15)

= α1~v1 + α2~v2 + . . .+ αr~vr + (αr+1 + βr+1)~vr+1 + . . .+ (αt + βt)~vt (16)

= α1~v1 + α2~v2 + . . .+ αr~vr + (αr+1 − αr+1)~vr+1 + . . .+ (αt − αt)~vt (17)

= α1~v1 + α2~v2 + . . .+ αr~vr. (18)

Observe that this solution is entirely orthogonal to Null(A), as we had expected. All that remains now is to
demonstrate the existence of the ~vi.

3 Constructing an Orthonormal Basis
From Gaussian elimination, we know how to compute a basis of Null(A), which we can orthonormalize
using Gram-Schmidt to produce the ~vr+1, . . . , ~vt. We can then extend this basis again using Gram-Schmidt
to span all of t-dimensional space, to produce the ~v1, . . . , ~vr, demonstrating the existence of our desired
basis. Although this description is not fully precise, with enough effort we can make it rigorous and solve
the problem of minimum energy control computationally. We don’t get nice expressions, however, and so
there is less insight to be had with this purely procedural approach.

Instead, we will choose to attack this problem from a different direction. By definition, the ~vi are an
orthonormal basis of t-dimensional space. But recall from earlier that, by the real spectral theorem, the

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

eigenvectors of a real symmetric matrix can give such an orthonormal basis. Wouldn’t it be interesting if
some symmetric matrix Q had exactly these eigenvectors ~v1, . . . , ~vt? To be extra useful, it would be nice if
~vr+1, . . . , ~vt are in fact a basis for Null(Q). That is, we want Q to have the same nullspace as A.

How do we generate such a symmetric matrix Q? Since it has the same null space as A, perhaps we could
try writing it in the form

Q = DA, (19)

where D is some unknown matrix of full column rank. With this choice of D, we get that Q and A have the
same null space. Now, as Q is symmetric, we can take transposes to obtain

Q = Q> = A>D> =⇒ DA = A>D>. (20)

Looking at the latter equality, a natural conjecture would be to try D = A>, so Q = A>A. It turns out that
this is precisely the matrix that works. Remember that this was actually already proven to you in 16A when
discussing the condition for when least squares works. We will prove it again here since it is an important
result.

First, we show that Null(A) ⊆ Null
(
A>A

)
. Specifically, for any ~v ∈ Null(A), we’d like to show that

~v ∈ Null
(
A>A

)
. Indeed,

A~v = ~0 =⇒ A>A~v = A~0 = ~0 =⇒ ~v ∈ Null
(
A>A

)
. (21)

Thus Null(A) ⊆ Null
(
A>A

)
.

Let’s try to prove the opposite relation, that is Null(A) ⊇ Null
(
A>A

)
, in order to show equality. Specifically,

for any ~v ∈ Null
(
A>A

)
, we’d like to show that ~v ∈ Null(A). Thus, we start off from a ~v such that

Q~v = A>A~v = ~0. (22)

Now let us pre-multiply by ~v> to get

~v>A>A~v = ~v>~0 = 0 (23)

‖A~v‖2 = 0 (24)

‖A~v‖ = 0 (25)

=⇒ A~v = 0 (26)

where by definition a norm is 0 if and only if the vector is the zero vector~0. Thus, we’ve shown Null
(
A>A

)
⊆

Null(A). Since we’ve proven this inequality in both directions, we have Null(Q) = Null
(
A>A

)
=

Null(A), as we desired. Thus, we can produce an orthonormal basis of the eigenspace corresponding to
λ = 0 of Q that provides us with the ~vr+1, . . . , ~vt that we wanted.

Considering the remaining eigenvectors of Q for λ 6= 0, by the real spectral theorem they are all mutually
orthogonal and will all be orthogonal to Null(Q). So we can choose the remaining r eigenvectors to form
our ~v1, . . . , ~vr, completing our construction of the {~vi}.

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

4 Singular Values
Now that we know how to construct this Q, and have demonstrated that its eigenvectors are exactly the
~v1, . . . , ~vt that we had wanted, it is natural to speculate on the eigenvalues of each of these eigenvectors. We
know that the eigenvalues of ~vr+1, . . . , ~vt are all 0, since they lie in the null space of Q. But what about the
eigenvalues for the first r eigenvectors? Let’s try to work this out algebraically.

By the definition of eigenvectors, we can perform manipulations very similar to what we did earlier involving
nullspaces, to see that

Q~vi = λi~vi (27)

A>A~vi = λi~vi (28)

~v>i A
>A~vi = λi~v

>
i ~vi (29)

‖A~vi‖2 = λi‖~vi‖2 (30)

λi =
‖A~vi‖2

‖~vi‖2
(31)

=‖A~vi‖2 . (32)

Notice that λi ≥ 0 due to the square. For i > r, the eigenvalues must be 0 since the eigenvectors are in the
nullspace. But for i ≤ r, since ~vi 6∈ Null(A), λi 6= 0, so λi > 0.

This is interesting, as we can now order our ~vi such that

λ1 ≥ λ2 ≥ . . . ≥ λr > λr+1 = λr+2 = . . . = λt = 0, (33)

and place them as columns of the eigenvector matrix

V =

 | |
~v1 · · · ~vt
| |

 . (34)

We can then write the eigendecomposition of Q as

Q = V ΛV −1 = V

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λt

V >. (35)

Since all the λi ≥ 0, we can define σi =
√
λi for all i, which gives us

σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = σr+2 = . . . = σt = 0 (36)

Recall that λi = ‖A~vi‖2, so σi = ‖A~vi‖. These σi are known as the singular values of A, and will prove
important in the next section.

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

5 Constructing Another Orthonormal Basis For the Output
Now, let’s try changing coordinates of our parameters ~w to be in V -basis, so let ~̃w = V −1 ~w = V T ~w. Then
to produce the same ~y, we need to have Ã = AV so that

Ã~̃w = (AV)(V T ~w) = A~w = ~y. (37)

How does Ã = AV =
[
A~v1 . . . A~vt

]
look like? Since ~vr+1, . . . , ~vt are all in the nullspace of A, we

know that the last t − r columns of Ã are all ~0. So what about the first r columns of Ã, which are A~vi for
i = 1, . . . , r?

Note that ~v1, . . . , ~vr are exactly the vectors orthogonal to the null space of A, and thus a basis for the
subspace of all inputs to A that create a non-zero output. Moreover, this means A~v1, . . . , A~vr must exactly
be a basis for all the outputs of applying A to any vector, meaning they are a basis for the column space of
A.

Additionally, just as the ~vi were mutually orthogonal, we conjecture that this set ofA~vi is mutually orthogonal
too. Let’s see why. For any valid choice of i,j, we see that

(A~vj)
>(A~vi) = ~v>j A

>A~vi (38)

= σ2i ~v
>
j ~vi =

{
0 if i 6= j
σ2i if i = j

(39)

due to the eigenvector property of ~vi and since ~vi and ~vj are orthonormal.

To make each of these vectors of unit length, we should divide them by their length‖A~vi‖, which we defined
earlier as the singular value σi. Thus, we define the orthonormal vectors ~u1, ~u2, . . . , ~ur that form a basis for
Col(A) with

~ui =
A~vi
σi

(40)

for all valid i ≤ r. Rearranging, we get

A~vi = σi~ui. (41)

Horizontally stacking this result for all i ≤ r, we find that

A

 | |
~v1 · · · ~vr
| |

 =

 | |
~u1 · · · ~ur
| |

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr

 (42)

AVr = UrΣr (43)

where Vr is t × r, Ur is n × r, and Σr is r × r. Is anything missing? Well, recall that each of the ~vi are t
dimensional and each of the ~ui are n dimensional, but we only use r ≤ n < t of each here. To fix this, we
can simply “pad” the Vr and Ur matrices with the remaining ~vi and ~ui for i > r.

We will first pad the Ur matrix. We want to extend the existing r orthonormal vectors to a full set of
n orthonormal vectors in order to create a orthornormal basis. To do this, we can apply Gram-Schmidt

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 6

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

to get the remaining orthonormal vectors, for example by applying it to
[
~u1 . . . ~ur | In

]
to get[

~u1 . . . ~ur ~ur+1 . . . ~un

]
as our new U matrix. Then we need to add more zeros on the bottom of

Σr to scale the new ~ui so that they don’t change our product:

A

 | |
~v1 · · · ~vr
| |

 =

 | |
~u1 · · · ~un
| |

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr
0 0 · · · 0
...

...
...

...
0 0 · · · 0

(44)

= U

[
Σr

0(n−r)×r

]
(45)

We then pad the Vr matrix with the other ~vr+1, . . . , ~vt. Then the new columns on the RHS should just be ~0
since these ~vi are in the nullspace of A, so the diagonal matrix of the σi should have more zero columns on
the right:

A

 | |
~v1 · · · ~vt
| |

 =

 | |
~u1 · · · ~un
| |

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr 0n×(t−r)
0 0 · · · 0
...

...
...

...
0 0 · · · 0

(46)

= U

[
Σr 0r×(t−r)

0(n−r)×r 0(n−r)×(t−r)

]
(47)

Now, since V is a square matrix with orthonormal columns, V −1 = V >, so we can post-multiply both sides
by V > to obtain

A =

 | |
~u1 · · · ~un
| |

[Σr 0r×(t−r)
0(n−r)×r 0(n−r)×(t−r)

] | |
~v1 · · · ~vt
| |

>

= UΣV >, (48)

defining U to be the horizontally stacked ~ui, V to be the horizontally stacked ~vi, and Σ to be the rectangular
diagonal matrix of the σi.

The above decomposition is called the full Singular Value Decomposition (SVD) of A as it decomposes A
into two orthonormal matrices and a diagonal matrix of singular values.

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 7

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

6 Applications to Planning
The singular value decomposition of A can be interpreted as follows - the first r columns of U form a basis
for the column space of A and the last t− r columns of V form a basis for the null space of A.

Moreover, they map between each other in a very clean manner, withA~vi = σi~ui for i ≤ r, and A~vi = ~0 for
i > r. Let’s see how we can use this property of the SVD can help us find the minimum cost control input.

We will again want to solve Ct ~w = ~x∗ such that‖~w‖ is minimized. We have replaced the conventional ~u
inputs with ~w to not confuse the notation. Let the SVD of Ct = UΣV T Recall that we showed that our
control vector ~w must have components only along ~v1, . . . , ~vr, in order to minimize its norm. Additionally
since ~u1, . . . , ~ur are a basis for Col(A), then ~x∗ must be written as a linear combination of them. We can
use these 2 properties to change coordinates of ~w and ~x∗ to in terms of these basis vectors. As a reminder,
due to orthonormality, the coefficient of the basis vector is just the inner product so

Ct ~w = ~x? (49)

A

 r∑
i=1

〈~w,~vi〉~vi

 =
r∑

i=1

〈~x?, ~ui〉~ui (50)

r∑
i=1

〈~w,~vi〉(A~vi) =

r∑
i=1

〈~x?, ~ui〉~ui (51)

r∑
i=1

σi〈~w,~vi〉~ui =

r∑
i=1

〈~x?, ~ui〉~ui, (52)

so

σi〈~w,~vi〉 = 〈~x?, ~ui〉 =⇒ 〈~w,~vi〉 =
〈~x?, ~ui〉
σi

∀i ≤ r. (53)

Substituting this back into our expression for ~w, we obtain

~w =
r∑

i=1

〈~x?, ~ui〉
σi

~vi, (54)

which is a clean expression for the minimum energy control to reach our desired state in terms of the SVD.

7 Outer Products
Now, we will look at a new interpretation of matrix multiplication, in order to construct an alternative way
of writing the SVD in terms of what are known as outer products.

Recall that, for real vectors ~x and ~y expressed as columns with n components, their inner product is defined
as ~y>~x, which yields a 1× 1 matrix typically treated as a scalar.

Similarly, we will define their outer product to be ~x~y>. Let’s see what this means. Let

~x =
[
x1 x2 · · · xm

]>
~y =

[
y1 y2 · · · yn

]>
,

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 8

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

where it is possible that m 6= n. Then, by the definition of matrix multiplication,

~x~y> =

x1
x2
...
xm

[
y1 y2 · · · yn

]
=

x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...
xmy1 xmy2 · · · xmyn

 . (55)

So while the inner product took two vectors of the same dimension and produced a scalar, the outer product
takes two vectors of possibly different dimensions and yields a matrix!

Furthermore, notice that this matrix cannot be any arbitrary matrix - since each of its columns are a scalar
multiple of ~x, it cannot be of a rank greater than 1. It is straightforward to show that any matrix of rank 0 or
1 can be produced by an outer product of two vectors, but we will not discuss the details here.

Now, why are we interested in the outer product? Well, recall that we can express real matrix multiplication
in terms of inner products. Specifically, we know that

− ~x>1 −
· · ·

− ~x>m −

 | |
~y1 · · · ~yn
| |

 =

~x>1 ~y1 ~x>1 ~y2 · · · ~x>1 ~yn
~x>2 ~y1 ~x>2 ~y2 · · · ~x>2 ~yn
...

...
. . .

...
~x>m~y1 ~x>m~y2 · · · ~x>m~yn

 , (56)

where the element at the ith row and jth column of the product of two matrices X and Y is the dot product
of the ith row of X and the jth column of Y .

However, what if we were interested in the columns of X and the rows of Y instead? As it turns out, it is
the case that | |

~x1 · · · ~xn
| |

− ~y>1 −

· · ·
− ~y>n −

 = ~x1~y
>
1 + ~x2~y

>
2 + . . .+ ~xn~y

>
n . (57)

This result can be proved by applying the definition of matrix multiplication, but it is tedious and so will be
omitted.

Instead, we will look at an example that demonstrates the main ideas behind the proof. Consider the product[
1 2
3 4

][
5 6
7 8

]
. (58)

From our knowledge of the matrix product as the composition of dot products representing each element in
the result, we obtain [

1 2
3 4

][
5 6
7 8

]
=

[
1 · 5 + 2 · 7 1 · 6 + 2 · 8
3 · 5 + 4 · 7 3 · 6 + 4 · 8

]
. (59)

We will not simplify this result, for reasons that will become more clear in a moment. Now, calculating the

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 9

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

product of these matrices using outer products, we obtain[
1 2
3 4

][
5 6
7 8

]
=

[
1
3

] [
5 6

]
+

[
2
4

] [
7 8

]
=

[
1 · 5 1 · 6
3 · 5 3 · 6

]
+

[
2 · 7 2 · 8
4 · 7 4 · 8

]
. (60)

Notice that the terms in our matrix multiplication evaluated using dot products correspond exactly to the
terms in our sums of outer products, so our outer product definition of matrix multiplication is consistent
with our previous definitions, at least in this example. A slightly more rigorous form of this argument can
be used to prove this result in general, but it is best to understand this result at an intuitive level.

8 Outer Product Form of the SVD
Now, we will use this new interpretation of matrix multiplication as a sum of outer products in order to
obtain an alternative way of expressing the SVD. Recall that the SVD of a matrix A represented it as the
product

A = UΣV >, (61)

where Σ was a matrix with nonzero entries only along its main diagonal. Let A be an m×n matrix, so U is
a square m ×m matrix and V > is a square n × n matrix. Additionally, without loss of generality, assume
that m ≥ n, so A is a “tall” matrix (the same results can be obtained if A is “wide” by considering A>,
which would become “tall”).

Let the columns of U be ~u1 through ~um, the nonzero diagonal entries of Σ be σ1 through σn (moving from
the top-left to the bottom-right entry), and the rows of V > be ~v>1 through ~v>n . From our understanding
of outer products, we know how to express UV > in terms of the ~ui and ~vi. But how does Σ affect this
interpretation?

Let’s consider just the first two terms of the SVD - the product UΣ. By the linear combination of columns
interpretation of matrix multiplication, we have that

UΣ =

 | |
~u1 · · · ~um
| |

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . . 0

0 0 · · · σn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

(62)

=

 | | |
σ1~u1 σ2~u2 · · · σn~un
| | |

 , (63)

since the σi are coefficients for the first n columns of ~u, with the subsequent columns vanishing entirely.
Now, we can multiply by V and apply the outer-product interpretation of matrix multiplication to obtain

A = UΣV > (64)

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 10

Note 15: Deriving the SVD @ 2021-12-13 03:11:39-08:00

=

 | | |
σ1~u1 σ2~u2 · · · σn~un
| | |

− ~v>1 −
− ~v>2 −
· · ·

− ~v>n −

 (65)

= σ1~u1~v
>
1 + σ2~u2~v

>
2 + · · ·+ σn~un~v

>
n (66)

=

n∑
i=1

σi~ui~v
>
i (67)

so any m × n matrix A (where m ≥ n) can be expressed as the weighted sum of n rank-1 matrices of the
form σi~ui~v

>
i . This interpretation of the SVD is known as the outer product form.

Contributors:

• Ashwin Vangipuram.

• Druv Pai.

• Rahul Arya.

• Anant Sahai.

Note 15: Deriving the SVD, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 11

	Minimum Energy Control
	Minimum Norm Solution
	Constructing an Orthonormal Basis
	Singular Values
	Constructing Another Orthonormal Basis For the Output
	Applications to Planning
	Outer Products
	Outer Product Form of the SVD

