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EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 16: SVD Properties
In this note, we’d like to explore and collect the fundamental properties of the SVD, so that from now on
we’ll be able to use it in a variety of contexts.

The following exposition derives heavily from Prof. Arcak’s EECS16B reader.

Throughout this note, let’s suppose A is an m× n matrix, with rank(A) = r. Note that r ≤ min{m,n}.

1 SVD Form
The full SVD (or just SVD) of A is the following decomposition of A:

A = UΣV ⊤ =
[
Ur Um−r

] [ Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

][
V ⊤
r

V ⊤
n−r

]
(1)

=

 | | | |
u⃗1 · · · u⃗r u⃗r+1 · · · u⃗m
| | | |


︸ ︷︷ ︸

m×m


σ1

. . . 0r×(n−r)

σr
0(m−r)×r 0(m−r)×(n−r)


︸ ︷︷ ︸

m×n



− v⃗⊤1 −
...

− v⃗⊤r −
−v⃗⊤r+1−

...
− v⃗⊤n −


︸ ︷︷ ︸

n×n

(2)

where U , V , and Σ are chosen such that

• U is an m×m matrix with orthonormal columns u⃗1, . . . , u⃗m that live in Rm.

• V is an n× n matrix with orthonormal columns v⃗1, . . . , v⃗n that live in Rn.

• Σ is an m× n matrix which has an r × r diagonal block Σr in the upper left, and 0 elsewhere.

• Ur is an m× r matrix with the first r orthonormal columns u⃗1, . . . , u⃗r of U .

• Vr is an n× r matrix with the first r orthonormal columns v⃗1, . . . , v⃗r of V .

• Σr is an r × r matrix with the largest r singular values σ1 ≥ · · · ≥ σr > 0 of A.1

• Um−r is an m× (m− r) matrix with the last m− r orthonormal columns u⃗r+1, . . . , u⃗m of U .

• Vn−r is an n× (n− r) matrix with the last n− r orthonormal columns v⃗r+1, . . . , v⃗n of V .

1We also consider the singular values σr+1 = · · · = σmin{m,n} = 0, although they don’t show up explicitly in the ma-
trix. We can consider them as the singular values associated with u⃗r+1, . . . , u⃗min{m,n} and v⃗r+1, . . . , v⃗min{m,n}, and thus
σr+1, . . . , σmin{m,n} can be thought of as the (r + 1)th, . . . ,min{m,n}th entries on the diagonal of Σ.
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Our matrices U, V,Σ are carefully constructed to have particular linear-algebraic properties. Some of these
are listed below.

• The columns of U are the orthonormal eigenvectors of AA⊤.

• The columns of V are the orthonormal eigenvectors of A⊤A.

• The diagonal entries in Σ are the square roots of the eigenvalues of AA⊤ or A⊤A.

• Col(Ur) = span(u⃗1, . . . , u⃗r) = Col(A).

• Col(Um−r) = span(u⃗r+1, . . . , u⃗m) ⊥ Col(A)2.

• Col(Vr) = span(v⃗1, . . . , v⃗r) ⊥ Null(A).

• Col(Vn−r) = span(v⃗r+1, . . . , v⃗n) = Null(A).

We have already derived several of these properties using the construction in our previous note. For com-
pleteness, when we put together an algorithm for constructing the SVD, we will provide the proof that our
algorithm supplies vectors with these properties.

2 Space Efficiency: Outer Product Form
This particular decomposition requires us to store m2 numbers for U , mn numbers for Σ, and n2 numbers
for V . So we need to store m2 +mn+ n2 numbers total. But a lot of these entries of Σ are 0s. This seems
redundant. The fact that Σ is so structured means that there is probably a way to simplify this representation.
Let’s try to discover this way by trying to do the multiplication A = UΣV ⊤, and simplify if possible.

A = UΣV ⊤ (3)

=
[
Ur Um−r

] [ Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

][
V ⊤
r

V ⊤
n−r

]
(4)

=
[
Ur Um−r

][ Σr

0(m−r)×r

]
V ⊤
r +

[
0r×(n−r)

0(m−r)×(n−r)

]
V ⊤
n−r

 (5)

=
[
Ur Um−r

] [ Σr

0(m−r)×r

]
V ⊤
r (6)

=
[
Ur Um−r

] [ ΣrV
⊤
r

0(m−r)×rV
⊤
r

]
(7)

=
[
Ur Um−r

] [ ΣrV
⊤
r

0(m−r)×n

]
(8)

= UrΣrV
⊤
r + Um−r0(m−r)×n (9)

= UrΣrV
⊤
r . (10)

2This notation may be unfamiliar. By saying that a subspace is ⊥ (orthogonal to) another subspace, we mean every vector in
the first subspace is orthogonal to every vector in the second subspace, or vice versa.
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This form of the SVD is the compact SVD, and while we are not going to work with it past this section
(and it’s out of scope for everything else in the class), it has its own useful properties (Ur and Vr have
orthonormal columns3, and Σr is square and invertible) and is less expensive to compute/store, especially
when r is small.

Motivated by the fact that Σr is diagonal and still has a lot of 0s and therefore a lot of redundancy that we
would like to optimize out, we attempt to complete the multiplication. This time we look at the columns of
each matrix.

A = UrΣrV
⊤
r (11)

=
[
u⃗1 · · · u⃗r

]
σ1

. . .

σr



v⃗⊤1
...
v⃗⊤r

 (12)

=
[
σ1u⃗1 · · · σru⃗r

]
v⃗⊤1
...
v⃗⊤r

 (13)

=

r∑
i=1

σiu⃗iv⃗
⊤
i . (14)

This is the outer product form of the SVD.

Let’s look at how much storage this requires. For each u⃗i, we require m numbers. For each v⃗i, we require n
numbers. And each σi is one number. We need r of each, so we need to store r(m+n+1) numbers, a huge
improvement from m2 + n2 + mn numbers as before. This is especially true when r is small. In fact, by
storing σiu⃗i and v⃗i separately as two sets of vectors, we could represent A using r(m+ n) entries, whereas
before we needed mn entries! This is another huge improvement and benefit of the SVD.

3 An Algorithm for Computing the SVD
So how do we actually calculate the SVD? We will work with the n× n symmetric matrix A⊤A or m×m
symmetric matrix AA⊤4. The one that is smaller is preferable to work with, since it requires less com-
putation and storage. We will give a justification for the case that we’re working with A⊤A, but provide
algorithms for both cases. The justification for the case of AA⊤ is left to discussion section.

By the Spectral Theorem for real symmetric matrices (discussed in Note 14), both of these matrices have
all real eigenvalues, r of which are positive and the remaining are 0. Thus we can do either of the following
procedures:

Method 1 To Find The Full SVD:
3Note that Ur is m× r and Vr is n× r. They’re generally not square matrices, so we can’t say U−1

r = U⊤
r , because U−1

r and
V −1
r don’t exist. But because they have orthonormal columns, we can say that U⊤

r Ur = V ⊤
r Vr = Ir .

4To check that they’re symmetric, take the transpose of each matrix, and observe that the matrix equals its transpose. For
example, we can check that A⊤A is symmetric:

(A⊤A)⊤ = (A)⊤(A⊤)⊤ = A⊤A.

You can try the case for AA⊤ yourself.
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(a) Find eigenvalues λ1, . . . , λn of A⊤A and order them such that λ1 ≥ · · · ≥ λr > 0 and λr+1 = · · · =
λn = 0.

(b) Find orthonormal eigenvectors v⃗1, . . . , v⃗n such that

A⊤Av⃗i = λiv⃗i for i = 1, . . . , n. (15)

(c) Define σi =
√
λi for i = 1, . . . ,min{m,n}.

(d) Find orthonormal vectors u⃗1, . . . , u⃗m, obtaining u⃗1, . . . , u⃗r by the equation

u⃗i =
Av⃗i
σi

for i = 1, . . . , r (16)

and finding u⃗r+1, . . . , u⃗m by Gram-Schmidt.

Method 2 To Find The Full SVD:

(a) Find eigenvalues λ1, . . . , λm of AA⊤ and order them such that λ1 ≥ · · · ≥ λr > 0 and λr+1 = · · · =
λm = 0.

(b) Find orthonormal eigenvectors u⃗1, . . . , u⃗m such that

AA⊤u⃗i = λiu⃗i for i = 1, . . . ,m. (17)

(c) Define σi =
√
λi for i = 1, . . . ,min{m,n}.

(d) Find orthonormal vectors v⃗1, . . . , v⃗n, obtaining v⃗1, . . . , v⃗r by the equation

v⃗i =
A⊤u⃗i
σi

for i = 1, . . . , r (18)

and finding v⃗r+1, . . . , v⃗n by Gram-Schmidt.

If we wanted to form the compact SVD, no problem! We could just skip finding the “extra” vectors
u⃗r+1, . . . , u⃗m and v⃗r+1, . . . , v⃗n, and it wouldn’t affect the computation of u⃗1, . . . , u⃗r and v⃗1, . . . , v⃗r at all.

4 Proving That the Algorithm Correctly Calculates the Full SVD
We have some things to show about this construction (specifically Method 1). First, we need to show that if
U , Σ, and V are defined as in eq. (1) and eq. (2) using the vectors provided by our algorithm, then A really
does equal UΣV ⊤. This is necessary to prove because otherwise the decomposition is wrong from the start.
After we show A = UΣV ⊤, we would like to prove the list of properties we listed on the first couple pages.

We begin by proving that A = UΣV ⊤. We start with the fact that V has orthogonal columns and is square,
so V ⊤ = V −1. Thus V ⊤V = V V ⊤ = In, so

A = AV V ⊤ = A
[
Vr Vn−r

] [ V ⊤
r

V ⊤
n−r

]
(19)

=
[
AVr AVn−r

] [ V ⊤
r

V ⊤
n−r

]
. (20)
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Notice that in the algorithm, we defined u⃗i and v⃗i in a very particular way. That is, for i ≤ r, we defined u⃗i
and v⃗i such that Av⃗i = σiu⃗i. Therefore

AVr = A
[
v⃗1 · · · v⃗r

]
=
[
Av⃗1 · · · Av⃗r

]
=
[
σ1u⃗1 · · · σru⃗r

]
= UrΣr. (21)

We sort of did this computation in reverse in eq. (13), so we are allowed to make this simplification.

Note also that for i > r, we know v⃗i is an eigenvector of A⊤A with eigenvalue 0. Thus

A⊤Av⃗i = 0v⃗i = 0⃗. (22)

Left-multiplying by v⃗⊤i , we get
v⃗⊤i A

⊤Av⃗i = v⃗⊤i 0⃗ = 0. (23)

But this leftmost term can be simplified further! It is indeed the squared norm of Av⃗i:

0 = v⃗⊤i A
⊤Av⃗i = (Av⃗i)

⊤(Av⃗i) =∥Av⃗i∥2 . (24)

Since the squared norm of Av⃗i is 0, the norm of Av⃗i is 0 (by taking square roots):

∥Av⃗i∥2 = 0 =⇒ ∥Av⃗i∥ = 0. (25)

But the norm of Av⃗i is the length of the vector Av⃗i. And the only vector with length 0 is the zero vector 0⃗,
so we must have Av⃗i = 0⃗. Therefore

AVn−r = A
[
v⃗r+1 · · · v⃗n

]
=
[
Av⃗r+1 · · · Av⃗n

]
=
[⃗
0 · · · 0⃗

]
= 0m×(n−r). (26)

Returning to our original computation in eq. (20), we use the results of the previous two calculations to get

A =
[
AVr AVn−r

] [ V ⊤
r

V ⊤
n−r

]
(27)

=
[
UrΣr 0m×(n−r)

] [ V ⊤
r

V ⊤
n−r

]
(28)

= UrΣrV
⊤
r + 0m×(n−r)V

⊤
n−r (29)

= UrΣrV
⊤
r . (30)

We have shown that A is equal to its compact SVD. To ensure that A is equal to its full SVD, we just need to
show that the compact SVD is exactly equal to the full SVD. But, we already did this, in particular in eq. (3)
through eq. (10)! There, we’ve shown that the algorithm given by Method 1 produces the correct SVD.

5 Proving Properties of the SVD
The only thing that’s left to prove now is the laundry list of properties on the first and second pages, for the
construction of the SVD defined by Method 1.

We will do the proofs in a different order than the facts were presented, but this is only to avoid getting any
cyclic proofs.

• V is an n× n matrix with orthonormal columns v⃗1, . . . , v⃗n that live in Rn.
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– We know that A⊤A is an n × n real symmetric matrix. Thus by the spectral theorem for real
symmetric matrices, A⊤A has n real eigenvalues λ1, . . . , λn and n orthonormal eigenvectors
v⃗1, . . . , v⃗n. Our construction sets those as the columns of V in eq. (15), so the columns of V are
orthonormal, as we desired.

• U is an m×m matrix with orthonormal columns u⃗1, . . . , u⃗m that live in Rm.

– We know from the construction of the algorithm that U is an m ×m matrix and can be written
as

U =
[
Ur Um−r

]
=
[
u⃗1 · · · u⃗r u⃗r+1 · · · u⃗m

]
. (31)

To show that U has orthonormal columns, we must show that U⊤U = Im. To do this, we can
do the computation:

U⊤U =

[
U⊤
r

U⊤
m−r

] [
Ur Um−r

]
=

[
U⊤
r Ur U⊤

r Um−r

U⊤
m−rUr U⊤

m−rUm−r

]
. (32)

Since Um−r was created by Gram-Schmidt to have m− r orthonormal columns u⃗r+1, . . . , u⃗m,
each of which is orthogonal with the columns u⃗1, . . . , u⃗r of Ur, we know that

U⊤
r Um−r =


u⃗⊤1
...
u⃗⊤r

[u⃗r+1 · · · u⃗m

]
=


u⃗⊤1 u⃗r+1 · · · u⃗⊤1 u⃗m

...
. . .

...
u⃗⊤r u⃗r+1 · · · u⃗⊤r u⃗m

 =


0 · · · 0
...

. . .
...

0 · · · 0

 = 0r×(m−r).

(33)
By adapting this calculation, we can also show that

U⊤
m−rUr = 0(m−r)×r and U⊤

m−rUm−r = Im−r.

The last quantity to compute is U⊤
r Ur, and the calculation is slightly different. We can again go

column-by-column:

U⊤
r Ur =


u⃗⊤1
...
u⃗⊤r

[u⃗1 · · · u⃗r

]
=


u⃗⊤1 u⃗1 · · · u⃗⊤r u⃗1
...

. . .
...

u⃗⊤1 u⃗r · · · u⃗⊤r u⃗r

 . (34)

This time, we haven’t computed any vectors by Gram-Schmidt, so we can’t say that everything is
immediately zero. Instead, what we can do is use our construction for u⃗i, introduced in eq. (16),
i.e., u⃗i = Av⃗i

σi
for i ≤ r. Then we can take the inner product of any two (not necessarily different)

u⃗i to get

u⃗⊤i u⃗j =

(
Av⃗i
σi

)⊤
(
Av⃗j
σj

)
(35)

=
v⃗⊤i A

⊤Av⃗j
σiσj

. (36)

At this point we recall our definition of v⃗j as an eigenvector of A⊤A with eigenvalue λj , so we
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can write

u⃗⊤i u⃗j =
v⃗⊤i A

⊤Av⃗j
σiσj

(37)

=
v⃗⊤i λj v⃗j
σiσj

(38)

=
λj

σiσj
v⃗⊤i v⃗j . (39)

Here we know v⃗i and v⃗j are columns of V . But we have just proven that the columns of V are
orthonormal! So we already know

v⃗⊤i v⃗j =

{
1 i = j

0 i ̸= j
. (40)

Putting it all together,

u⃗⊤i u⃗j =
λj

σiσj
v⃗⊤i v⃗j =

λj

σiσj

{
1 i = j

0 i ̸= j
=

λi

σ2
i

{
1 i = j

0 i ̸= j
=

{
1 i = j

0 i ̸= j
(41)

where in the last equality we use step (c) of Method 1 to show that σ2
i = λi. Thus

U⊤
r Ur =


u⃗⊤1 u⃗1 · · · u⃗⊤r u⃗1
...

. . .
...

u⃗⊤1 u⃗r · · · u⃗⊤r u⃗r

 =


1 · · · 0
...

. . .
...

0 · · · 1

 = Ir. (42)

Given everything we have found out, we can start again from eq. (32) and get

U⊤U =

[
U⊤
r Ur U⊤

r Um−r

U⊤
m−rUr U⊤

m−rUm−r

]
(43)

=

[
Ir 0r×(m−r)

0(m−r)×r Im−r

]
(44)

= Im. (45)

Thus the columns of U are orthonormal, as we wanted to show.

• Σ is an m× n matrix which has an r × r diagonal block Σr in the upper left, and 0 elsewhere. Σr is
an r × r matrix with the largest r singular values σ1 ≥ · · · ≥ σr > 0 of A.

– Since we get the singular values and lay it out in the prescribed form during our construction,
we just need to show that we actually get exactly r positive singular values. We know from the
spectral theorem for real symmetric matrices that A⊤A has n real eigenvalues, and r nonzero
eigenvalues.
We now claim that these nonzero eigenvalues are all positive. In fact, let v⃗ be an eigenvector of
A⊤A with eigenvalue λ. Then

A⊤Av⃗ = λv⃗. (46)
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Left-multiplying by v⃗⊤,we get
v⃗⊤A⊤Av⃗ = λv⃗⊤v⃗. (47)

But the left-hand side can be simplified:

v⃗⊤A⊤Av⃗ = (Av⃗)⊤(Av⃗) =∥Av⃗∥2 . (48)

So can the right-hand side:
λv⃗⊤v⃗ = λ∥v⃗∥2 . (49)

Thus
∥Av⃗∥2 = λ∥v⃗∥2 . (50)

We know that both∥Av⃗∥2 and∥v⃗∥2 are squared terms, so they are both ≥ 0. Thus λ ≥ 0 as well.
This is true for any arbitrary eigenvalue of A⊤A, so every eigenvalue of A⊤A is non-negative.
Thus if an eigenvalue is nonzero then it must be positive. Finally, in step (c) of Method 1, we set
σi =

√
λi for all eigenvalues λi, so there are r positive σi as well.

• Ur, Vr, Um−r, Vn−r are sub-matrices of U and V with orthonormal columns.

– This sub-matrix breakdown is just how we construct U and V . The orthonormality comes from
the fact that the columns of U and V are orthonormal, so any subset of them will also be or-
thonormal. This includes the subsets of columns that become the columns of Ur, etc.

• Col(Vn−r) = Null(A).

– We first want to show that Col(Vn−r) ⊆ Null(A), then Null(A) ⊆ Col(Vn−r). This implies
that Col(Vn−r) = Null(A).
First, take any v⃗ ∈ Col(Vn−r). We want to show that v⃗ ∈ Null(A). Let w⃗ be such that v⃗ =
Vn−rw⃗; we know w⃗ exists by the definition of Col(Vn−r). We want to show that v⃗ ∈ Null(A),
so the natural thing to do is to multiply by A:

Av⃗ = AVn−rw⃗ (51)

= A
[
v⃗r+1 · · · v⃗n

]
w⃗ (52)

=
[
Av⃗r+1 · · · Av⃗n

]
w⃗. (53)

At this point we would like to stop and consider what each of these columns are. We know that
since v⃗r+1, . . . , v⃗n are eigenvectors of A⊤A with eigenvalue 0,

A⊤Av⃗r+1 = · · · = A⊤Av⃗n = 0⃗. (54)

Therefore v⃗r+1, . . . , v⃗n ∈ Null
(
A⊤A

)
. But from EECS16A Note 23, we know that for any

matrix A, we have
Null(A) = Null

(
A⊤A

)
(55)

Thus v⃗r+1, . . . , v⃗n ∈ Null(A), and so

Av⃗ =
[
Av⃗r+1 · · · Av⃗n

]
w⃗ (56)

=
[⃗
0 · · · 0⃗

]
w⃗ (57)
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= 0⃗. (58)

Thus v ∈ Null(A). Since v is an arbitrary vector in Col(Vn−r),

Col(Vn−r) ⊆ Null(A). (59)

Now we want to try the other direction. Take any v⃗ ∈ Null(A). We want to show that v⃗ ∈
Col(Vn−r). Since v⃗ ∈ Null(A),

Av⃗ = 0⃗ (60)

Left-multiplying by A⊤,
A⊤Av⃗ = A⊤0⃗ = 0⃗ = 0v⃗. (61)

Thus v⃗ is an eigenvector of A⊤A with eigenvalue 0, so it’s contained in the span of the eigen-
vectors of A⊤A associated with the eigenvalue 0. But a basis for these eigenvectors is exactly
v⃗r+1, . . . , v⃗n, and so this span is Col(Vn−r). Thus v⃗ ∈ Col(Vn−r). Since v⃗ is an arbitrary vector
in Null(A),

Null(A) ⊆ Col(Vn−r). (62)

Thus by eq. (59) and eq. (62),
Null(A) = Col(Vn−r), (63)

which is what we wanted to show.

• Col(Vr) ⊥ Null(A).

– Since V has orthonormal columns, we know that every vector in v⃗1, . . . , v⃗r is orthogonal to
every vector in v⃗r+1, . . . , v⃗n. Thus each of v⃗1, . . . , v⃗r is orthogonal to span(v⃗r+1, . . . , v⃗n) =
Col(Vn−r). Thus any linear combination of v⃗1, . . . , v⃗r is too, so

span(v⃗1, . . . , v⃗r) ⊥ Col(Vn−r). (64)

But the first term is just Col(Vr) by definition, and we just proved that Col(Vn−r) = Null(A).
So

Col(Vr) ⊥ Null(A). (65)

• Col(Ur) = Col(A).

– Remember that the columns of Ur are u⃗1, . . . , u⃗r. From eq. (32) we obtain u⃗i =
Av⃗i
σi

, which is
proportional to Av⃗i.
We already showed that u⃗1, . . . , u⃗m are orthonormal and hence u⃗1, . . . , u⃗r are orthonormal. This
takes care of the proportionality, so all we need to show is that span(Av⃗1, . . . , Av⃗r) = Col(A).
But Av⃗1, . . . , Av⃗r are exactly the columns of AVr, so the left hand side is Col(AVr).
First, we want to show Col(A) ⊆ Col(AVr). Let v⃗ ∈ Col(A); we want to show that v⃗ ∈
Col(AVr). Indeed, let w⃗ be such that v⃗ = Aw⃗; we know w⃗ exists by the definition of Col(A).
Then since v⃗1, . . . , v⃗n is an orthonormal basis for Rn and also the columns of V , there is a y⃗
such that w⃗ = V y⃗. Then

v⃗ = Aw⃗ = AV y⃗. (66)

Writing V in terms of Vr and Vn−r,

v⃗ = AV y⃗ = A
[
Vr Vn−r

]
y⃗ =

[
AVr AVn−r

]
y⃗. (67)
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But we already proved that
Col(Vn−r) = Null(A) (68)

so
AVn−r = 0m×(n−r). (69)

Thus
v⃗ =

[
AVr AVn−r

]
y⃗ =

[
AVr 0m×(n−r)

]
y⃗. (70)

Thus v⃗ is a linear combination of the columns of AVr, so v⃗ ∈ Col(AVr). Since this is true for
arbitrary v⃗,

Col(A) ⊆ Col(AVr). (71)

The reverse direction is easier. Take v⃗ ∈ Col(AVr). Then there is w⃗ such that

v⃗ = AVrw⃗ = A(Vrw⃗). (72)

So in the end v⃗ is a linear combination of columns of A, hence v⃗ ∈ Col(A). Since this is true
for arbitrary v⃗,

Col(AVr) ⊆ Col(A). (73)

Hence by eq. (71) and eq. (73),
Col(AVr) = Col(A). (74)

To wrap up the proof, recall that we showed at the beginning that the columns of AVr, i.e., the
vectors Av⃗1, . . . , Av⃗r are scaled versions of u⃗1, . . . , u⃗r. Thus they span the same set, which is
Col(A), as we desired.

• Col(Um−r) ⊥ Col(A).

– Since U has orthonormal columns, every vector in u⃗1, . . . , u⃗r is orthogonal to every vector in
u⃗r+1, . . . , u⃗m. Thus each of u⃗r+1, . . . , u⃗m is orthogonal to span(u⃗1, . . . , u⃗r) = Col(Ur). Thus
any linear combination of u⃗r+1, . . . , u⃗m is too, so

span(u⃗r+1, . . . , u⃗m) ⊥ Col(Ur). (75)

But the first term is just Col(Um−r) by definition, and we just proved that Col(Ur) = Col(A).
So

Col(Um−r) ⊥ Col(A) (76)

as desired.

• The columns of V are eigenvectors of A⊤A.

– In the second step of the construction of Method 1, one sets the columns of V to the v⃗1, . . . , v⃗n
which are orthonormal eigenvectors of A⊤A.

• The columns of U are eigenvectors of AA⊤.

– We first show that u⃗1, . . . , u⃗r are eigenvectors of AA⊤. To do so, we may as well compute
AA⊤u⃗i and see what we get. More specifically, for 1 ≤ i ≤ r,

AA⊤u⃗i = AA⊤
(
Av⃗i
σi

)
(77)
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=
1

σi
AA⊤Av⃗i (78)

=
1

σi
A(A⊤Av⃗i) (79)

=
1

σi
A(λiv⃗i) (80)

=
λi

σi
Av⃗i (81)

= λi
Av⃗i
σi

(82)

= λiu⃗i. (83)

Hence u⃗i is an eigenvector of AA⊤.
We then show that u⃗r+1, . . . , u⃗m are eigenvectors of AA⊤. Since rankA = r, we know
rank(AA⊤) = r, so AA⊤ has r nonzero eigenvalues, corresponding to u⃗1, . . . , u⃗r. Then the
remaining m − r eigenvalues of AA⊤ are equal to 0. Since span(u⃗1, . . . , u⃗m) = Rm, the re-
maining m−r eigenvectors of AA⊤ span exactly the same space as span(u⃗r+1, . . . , u⃗m). Since
each eigenvector corresponding to 0 of AA⊤ has the same eigenvalue, any linear combination
of them is also an eigenvector of AA⊤ corresponding to 0. Thus u⃗r+1, . . . , u⃗m are eigenvectors
of AA⊤ corresponding to 0.

• The diagonal entries of Σ are eigenvalues of A⊤A or AA⊤.

– In the third step of Method 1 algorithm, we calculate the diagonal entries of Σ by taking the
square roots of the eigenvalues of A⊤A. So we just want to show that the eigenvalues of A⊤A
are exactly the eigenvalues of AA⊤. We will show this in the following way.
Suppose (v⃗, λ) is an eigenvector-eigenvalue pair for A⊤A.
To show that λ is an eigenvalue of AA⊤, the easiest thing we could do is to find a vector u⃗ such
that AA⊤u⃗ = λu⃗, and thus conclude that (u⃗, λ) is an eigenvector-eigenvalue pair for AA⊤.
But we don’t have any vector u⃗. We know that it should depend on A in some way, and also that
maybe it could depend on v⃗. To figure out exactly what we can try, let’s check the dimensions.
More precisely, we know that AA⊤ is an m ×m matrix, while A⊤A is an n × n matrix. This
means that v⃗ is a length-n vector, but we want u⃗ to be a length-m vector. The easiest way we
can get a length m vector from a length n vector is just to multiply by A, which is an m × n
matrix and thus multiplies length n vectors to length m vectors. So we will guess u⃗ = Av⃗ and
see if it works.
Indeed, let us test our guess in the eigenvalue equation. In other words, we will multiply u⃗ by
AA⊤ and see if we get something involving u⃗ on the right-hand side.

AA⊤u⃗ = AA⊤(Av⃗) (84)

= A(A⊤Av⃗) (85)

= A(λv⃗) (86)

= λAv⃗ (87)

= λu⃗. (88)

Great, so it all works out! Indeed, (u⃗, λ) is an eigenvector-eigenvalue pair for AA⊤. And so λ
is an eigenvalue of AA⊤, as desired.
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To show that if λ is an eigenvalue of AA⊤ then it is an eigenvector of A⊤A, one can show it
in the same way; namely, if (u⃗, λ) is an eigenvector-eigenvalue pair for AA⊤, and if we define
v⃗ = A⊤u⃗, then we can show in the same way that (v⃗, λ) is an eigenvector-eigenvalue pair for
A⊤A. And so if λ is an eigenvalue of AA⊤, then it is an eigenvector for A⊤A.
So the diagonal entries of Σ are the eigenvalues of AA⊤ and A⊤A, since they are exactly the
same eigenvalues.

We proved all the properties we wanted to prove, for Method 1 of finding the SVD. The corresponding
properties for Method 2 can be similarly verified.

6 Geometric Interpretation
To reiterate, let A = UΣV ⊤ be the full SVD.

Note that multiplying a vector x⃗ by an orthonormal matrix U does not change its norm. This follows because
U⊤U = I , which implies

∥Ux⃗∥2 = (Ux⃗)⊤(Ux⃗) = x⃗⊤U⊤Ux⃗ = x⃗⊤x⃗ =∥x⃗∥2 . (89)

Thus we can interpret multiplication by an orthonormal matrix as a combination of operations that don’t
change length, such as rotations, and reflections.

Since Σr is diagonal with entries σ1, . . . , σr, multiplying a vector by Σ stretches the first entry of the vector
by σ1, the second entry by σ2, and so on.

Combining these observations, we interpret Ax⃗ as the composition of three operations:

(a) V ⊤x⃗ which rotates x⃗ without changing its length.

(b) ΣV ⊤x⃗ which stretches the resulting vector along each axis with the corresponding singular value,

(c) UΣV ⊤x⃗ which again rotates the resulting vector without changing its length.

The following figure illustrates these three operations moving from the right to the left.

A = U Σ V ⊤

v⃗1

v⃗2

e⃗1

e⃗2

σ1e⃗1

σ2e⃗2
σ1u⃗1

σ2u⃗2

Here as usual e⃗1, e⃗2 are the first and second standard basis vectors.

The geometric interpretation above reveals that σ1 is the largest amplification factor a vector can experience
upon multiplication by A. More specifically, if∥x⃗∥ ≤ 1 then∥Ax⃗∥ ≤ σ1. We achieve equality at x⃗ = v⃗1,
because then V ⊤v⃗1 is the first unit vector, which gets magnified by σ1 when multiplied by Σ to end up with
a total length of σ1.
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7 The Moore-Penrose Pseudoinverse
The geometric interpretation reveals a way to partially invert any matrix A by using its SVD. Suppose
y⃗ = Ax⃗ and A = UΣV ⊤. So then y⃗ = UΣV ⊤x⃗. Remember that our geometric interpretation of A is a
rotation V ⊤ followed by a scaling Σ followed by another rotation U . In this way, a geometric interpretation
of an inverse of A could start with a rotation U⊤ to undo the last rotation U ; un-scale where we can using
some notion of the inverse of Σ; and undo the last rotation V using V ⊤. So if we call such an inverse A†, it
would look something like

A† = V Σ†U †. (90)

Here Σ† is a matrix that undoes the scaling of Σ; it is defined by the following rule:

if Σ =

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
thenΣ† =

[
Σ−1
r 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
. (91)

This matrix A† is the Moore-Penrose pseudoinverse of A; you will get significantly more practice with it
in the homeworks.

8 Examples
Example SVD Interpretation.

Suppose we have an m× n matrix A, of rank r, that contains the ratings of m viewers for n movies. Write

A = UΣV ⊤ =
r∑

i=1

σiu⃗iv⃗
⊤
i . (92)

We can interpret each rank 1 matrix σiu⃗iv⃗
⊤
i to be due to a particular attribute, e.g., comedy, action, sci-fi, or

romance content. Then σi determines how strongly the ratings depend on the ith attribute; the entries of v⃗⊤i
score each movie with respect to this attribute, and the entries of u⃗i evaluate how much each viewer cares
about this particular attribute. Interestingly, the (r + 1)th attributes onwards don’t influence the ratings,
according to our analysis.

Numerical Example 1.

Let’s find the SVD for

A =

[
4 4
−3 3

]
. (93)

We use Method 2. We calculate

AA⊤ =

[
4 4
−3 3

][
4 −3
4 3

]
=

[
32 0
0 18

]
. (94)

This happens to be diagonal, so we can read off the eigenvalues:

λ1 = 32 λ2 = 18 (95)
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We can select the orthonormal eigenvectors:

u⃗1 =

[
1
0

]
u⃗2 =

[
0
1

]
. (96)

The singular values are

σ1 =
√

λ1 =
√
32 = 4

√
2 σ2 =

√
λ2 =

√
18 = 3

√
2. (97)

Then to find v⃗1, v⃗2, we do

v⃗1 =
A⊤u⃗1
σ1

=
1

4
√
2

[
4
4

]
=

[
1/
√
2

1/
√
2

]
(98)

v⃗2 =
A⊤u⃗2
σ2

=
1

3
√
2

[
−3
3

]
=

[
−1/

√
2

1/
√
2

]
. (99)

Thus our SVD is

A = UΣV ⊤ =

[
1 0
0 1

][
4
√
2 0

0 3
√
2

][
1/

√
2 1/

√
2

−1/
√
2 1/

√
2

]
. (100)

Note that we can change the signs of u⃗1, u⃗2 and they are still orthonormal eigenvectors, and produce a valid
SVD. However, changing the sign of u⃗i requires us to change the sign of v⃗i = A⊤u⃗i, so therefore the product
of u⃗iv⃗⊤i remains unchanged.

Another source of non-uniqueness arises when we have repeated singular values, as seen in the next example.

Numerical Example 2.

We want to find an SVD for

A =

[
1 0
0 −1

]
. (101)

Again, we use Method 2. Note that AA⊤ = I2, which has repeated eigenvalues at λ1 = λ2 = 1. In
particular, any pair of orthonormal vectors is a set of orthonormal eigenvectors for I2 = AA⊤. We can
parameterize all such pairs as

u⃗1 =

[
cos(θ)
sin(θ)

]
u⃗2 =

[
− sin(θ)
cos(θ)

]
(102)

where θ is a free parameter. Since σ1 = σ2 = 1, we obtain

v⃗1 =
A⊤u⃗1
σ1

=

[
cos(θ)
− sin(θ)

]
v⃗2 =

A⊤u⃗2
σ2

=

[
− sin(θ)
− cos(θ)

]
. (103)

Thus an SVD is

A = UΣV ⊤ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

][
1 0
0 1

][
cos(θ) − sin(θ)
− sin(θ) − cos(θ)

]
(104)

for any value of θ. Thus this matrix has infinite valid SVDs, one for each value of θ in the interval [0, 2π).
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