
Note 3: Vector Differential Equations @ 2021-09-11 22:56:12-07:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 3: Vector Differential Equations

1 Matrix Form
1.1 Introduction
Last time we saw how to solve simple scalar first order linear differential equations.

Now, we are going to expand our tool set and learn how to tackle multivariable differential equations. (You
will see in homeworks that these exact same ideas will also equip us to deal with higher-order differential
equations where we have second and third derivatives involved.) Let’s motivate the need to understand two
dimensional systems with the following circuit.

−
+Vin

R1 I1
1

C1

R2 I2
2

C2

Figure 1: Two dimensional system

Let C1 = C2 = 1 µF, R1 =
1
3MΩ and R2 =

1
2MΩ.1

Concept Check: Before we begin, how would you solve for the above system if R2 = 0?

Answer: If R2 = 0, then the C1 and C2 are connected in parallel and can be combined into a single effective
capacitance of C1 + C2. This is like what happened earlier when we had two gate capacitances in parallel.

As in Note 1, let us first consider the discharging case. In the above system, let Vin = 1V for time t < 0,
and Vin = 0V for time t ≥ 0. With this in mind, we have two steady state conditions:

(a) Initial condition t = 0 : The voltage has been charging the capacitors for an infinite amount of time.
Hence, both capacitors have voltage VC1 = VC2 = 1V and current I1 = I2 = 0A.

(b) As t → ∞ : After the capacitors have been allowed to discharge for a long period of time, they carry
no charges on their plates, hence VC1 = VC2 = 0V.

Next, let us solve for the transients, i.e. how does our system go from (a) to (b)? First we need to set up the
circuit equations. We will define V1 = VC1 and V2 = VC2 as the voltages across our capacitors.

1The SI prefixes ‘M’ and ‘µ’ stand for "mega" and "micro," and correspond to the decimal multiples of 106 and 10−6 respec-
tively.
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V2 = V1 − I2R2 (1)

I2 = C2
d

dt
V2 (2)

0− V1 = I1R1 ⇒ I1 = − V1

R1
(3)

I1 = I2 + C1
d

dt
V1 (4)

For eq. (1) and eq. (2), we look at the current through Node 2 , using Ohm’s law for the former and voltage-

current relation for the capacitor in the latter. Similarly, we find eq. (3) and eq. (4) by looking at Node 1 .
Similar to what we had seen in a single capacitor system, we have effectively introduced two new variables -
d
dtV1 and d

dtV2. Next, to solve for the transients, we need to first define our system variables. The standard
approach that we will always take is to make anything that gets differentiated into a state variable.
Hence, we will need two state variables, V1 and V2.

1.2 Systems of Differential Equations
We get a system of differential equations by isolating the derivative terms and solving for them in terms
of their non-differentiated selves. You can view this as doing the downward pass of Gaussian Elimination
using an ordering of the variables so that the d

dt · variables come second to last and their non-differentiated
counterparts come last. Because there will be more unknowns than equations, Gaussian elimination will
stop on the last d

dt -ed variable. Then, we can do a limited upward-pass (back-substitution pass) of Gaussian
elimination to purge any dependence of one d

dt -ed variable on any other d
dt -ed variable. This gives rise to

the system of differential equations in a systematic way — it is the lower block that remains after doing this
back-substitution. In principle, every other circuit quantity of interest can be found once we know how the
state variables and their derivatives behave.

d

dt
V1(t) = −

(
1

R1C1
+

1

R2C1

)
V1(t) +

V2(t)

R2C1
(5)

d

dt
V2(t) =

V1(t)

R2C2
− V2(t)

R2C2
(6)

The steps outlining how we obtained eq. (5) and eq. (6) are in section 4.

The fact that every linear circuit involving capacitors (and as we will see inductors as well) can eventually
be expressed into this form is effectively a consequence of the Gaussian Elimination algorithm.

Concept Check: Take a second to work out setting up the above differential equations. It is important to
try to reduce all your branch equations from the circuit analysis to as few variable as possible.

As seen in EE16A, when encountering a system of equations, we try to put it into vector/matrix form to try

to solve it. So, let’s put eq. (5) and eq. (6) in the matrix differential form. We define x⃗(t) =

[
V1(t)
V2(t)

]
, and:

[
dV1
dt
dV2
dt

]
=

−(
1

R1C1
+ 1

R2C1

)
V1 +

V2
R2C1

V1
R2C2

− V2
R2C2

 (7)
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=

−(
1

R1C1
+ 1

R2C1

)
1

R2C1
1

R2C2
− 1

R2C2

[
V1(t)
V2(t)

]
(8)

d

dt
x⃗(t) =

[
−5 2
2 −2

]
x⃗(t) (9)

In eq. (9), we have substituted in for the component values defined above so that we get a matrix with
concrete numbers in it.

Quick Aside: You may come across a dot over the variable of interest (e.g. V̇1) as short hand to represent
the d

dt operator. This is alternatively known as Newton’s notation and is sometimes used for conciseness,
especially in fields influenced by Physics notation. Similarly, we sometimes define V̈ ≡ d2

dt2
V to make it

faster to write second derivatives. However, we won’t be using Newton’s notation in this course.

In general, we want to set up our systems in the follwing generic form:

d

dt
x⃗(t) = Ax⃗(t) + b⃗ (10)

So, why do we choose this form? Because it most closely resembles the first order scalar differential equation
we studied in the previous note, and our goal in this note is to massage this equation to convert it to a

collection of first order differential equations. In context of our above example, A =

[
−5 2
2 −2

]
and b⃗ = 0⃗

because there is no external voltage or current being applied for t ≥ 0 in the above example.

2 Diagonalization by Means of an Eigenbasis

2.1 Eigenvalues and Eigenvectors
Before we delve into solving our system of differential equations, let’s review a core concept from EECS16A
- eigenvalues and eigenvectors. Please note this will be an abridged version of the content covered in
EECS16A. If you have further questions regarding any of these concepts, please review the notes from
EECS16A.

What are eigenvalues and eigenvectors? An eigenvector is a vector that is only scaled by a value (the
corresponding eigenvalue) when acted upon by a matrix, i.e.

Av⃗λ = λv⃗λ (11)

Here, v⃗λ ̸= 0⃗ is an eigenvector of A which corresponds to the scalar λ eigenvalue. If we look at all the
eigenvectors of the matrix A corresponding to a single λ, these together form a subspace known as the
λ-eigenspace. Each distinct eigenvalue is associated with its own nontrivial eigenspace2. We can see this

2In 16A, you also saw some interesting properties of these eigenspaces. For example, any collection of nonzero vectors drawn
from eigenspaces corresponding to distinct eigenvalues is linearly independent. This is proved by contradiction—the simplest case
is for two distinct eigenvalues. (A vector can’t simultaneously be two different multiples of the same thing!) From there, the proof
continues to three vectors. If one is expressible as a combination of the others, then those two must be expressible as a multiple of
each other, which we have already ruled out. And so on. If you don’t remember this proof, it is worth doing for yourself. Anyway,
as a result, there cannot be more than n distinct eigenvalues for an n × n matrix since each one must be associated with its own
eigenspace, and there can only be n linearly independent directions in an n-dimensional space.
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subspace property by rearranging the above equation into:

(A− λIn)v⃗ = 0⃗. (12)

Here, In is the n× n identity matrix. Since Av⃗λ = λv⃗λ, we know that the matrix A− λIn has a nullspace
(namely the eigenspace corresponding to the eigenvalue λ of A). Consequently, this matrix (A− λIn) must
be non-invertible and thus det(A − λIn) = 0. Remember, the determinant of a square matrix measures
the oriented volume3 of the unit hypercube as transformed by that matrix. Non-invertible matrices destroy
information by squashing the space along at least one direction (the nullspace directions), and so result in
something with volume zero.

This gives us the characteristic equation4 and solving this equation will give us the eigenvalues λ. As a

working example, let’s compute the eigenvalues of A =

[
1 2
4 3

]
:

det(A− λI2) = det

[
1 2
4 3

]
−

[
λ 0
0 λ

] (13)

= det

[
1− λ 2
4 3− λ

] (14)

Taking the determinant and setting it to zero, we get the characteristic equation:

0 = (1− λ)(3− λ)− (4)(2) = λ2 − 4λ− 5 = (λ− 5)(λ+ 1) (15)

Setting eq. (15) to 0 and solving the quadratic equation, we get the eigenvalues as λ1 = 5 and λ2 = −1.
Each eigenvalue will have it’s own eigenspace, and it will define the nullspace of the matrix A−λIn. Hence
to find the eigenspace, we can just find the relevant nullspace5

(A− λ1I2)v⃗1 = (A− 5In)v⃗1 =

[
−4 2
4 −2

][
v11
v12

]
= 0⃗ (16)

We see that both rows provide redundant information - 4v11 − 2v12 = 0, and hence an eigenvector is

v⃗1 =

[
1
2

]
.

Concept Check: Find an eigenvector v⃗2 correspoding to λ2.
3Recall how the determinant is computed by doing Gaussian elimination. Multiplication of a row by −1 incurs a factor of −1

because it is like looking through a mirror—a mirror flips orientation. Every time we swap two rows, we also incur a factor of
−1—this is because swapping two rows is like rotating and then looking through a mirror. Rotating doesn’t change volume, but the
mirror flips the orientation. Adding a multiple of one row to another does nothing to the oriented volume because it is like shearing
a cube—just as pushing over a deck of cards doesn’t change the volume of the deck, shearing doesn’t change volume either. Scaling
a row by a positive number has that scaling effect on the volume—and so by reversing the scalings done in Gaussian Elimination
(which gets us to the Identity), we can get the volume effect of the original matrix.

4The characteristic equation is often also referred to as the characteristic polynomial
5You know from EECS 16A how you can find nullspaces systematically using Gaussian Elimination. Simply run Gaussian

elimination until it terminates—you will have at least one row of zeros. Then work your way backward from the end finding free
variables (variables that you did not “pivot” on — i.e. variables that you never explicitly tried to eliminate from lower equations—
these are variables that got eliminated on their own!) and then expressing others in terms of them. This will give you a basis for the
nullspace.
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Answer: A second eigenvector is v⃗2 = α

[
1
−1

]
. Note that any α ̸= 0 would still be a valid eigenvector.

2.2 Repeated and Complex Eigenvalues
2.2.1 Repeated Eigenvalues

For a 2× 2 matrix, it’s possible that the two eigenvalues that you end up with have the same value, leading
to a phenomenon called a repeated eigenvalues. This repeated eigenvalue can have one or two dimensional
eigenspace (unlike a single, unrepeated eigenvalue, which will only have a one dimensional eigenspace).

For example, the following matrix has a repeated eigenvalue of λ.

A =

[
λ 0
0 λ

]

The λ-eigenspace of this matrix is all of R2 since for any vector v⃗ ∈ R2, Av⃗ = λv⃗.

We can also have examples like

A =

[
0 1
0 0

]
that have a single eigenvalue λ = 0. (One can see this by looking at the characteristic equation, which turns

out to be λ2 = 0.) In this case, the relevant eigenspace is one-dimensional—only

[
1
0

]
and its multiples are

eigenvectors here. (If there were any other linearly independent eigenvectors corresponding to the 0 eigen-
value, then everything would have to be an eigenvector and that would mean the matrix mapped everything
to the zero vector. But the matrix is definitely not the zero matrix, so that isn’t what is going on.)

2.2.2 Complex Eigenvalues

It can also be the case that when we solve det (A− λIn) = 0, there will be no real solutions to λ. Consider
the rotation matrix (described in Note j):

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(17)

Concept Check: When does Rθ have real eigenvalues? Why? Answer: For θ = 0◦ or θ = 180◦.

However, when θ does not correspond to 0◦ or 180◦ rotation, there are no real vectors that are scaled versions
of themselves after the transformation. This results in complex eigenvalues. For example, let’s look at 45◦

rotation:

R =
1√
2

[
1 −1
1 1

]
det(R− λI) =

1

2
(1− λ)(1− λ) +

1

2

Setting this determinant equal to zero and solving yields the complex eigenvalues, λ = 1√
2
(1 + j) and λ =
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1√
2
(1−j), which makes sense because there are no physical (real) eigenvectors for a rotation transformation

in two dimensions.

2.3 Change of Basis and Diagonalization
Let’s start with a vector v⃗ ∈ Rn. This vector represents a point in space. When you think about this vector
written out using the coordinates, you are scaling the vectors in the standard basis (i.e. the columns of the
identity matrix, In) by the components of v⃗ and then adding them up:

v⃗ = Inv⃗ = v1


1
0
...
0

+ v2


0
1
...
0

+ · · ·+ vn


0
0
...
1


But, suppose that I think about this vector in terms of a different set of directions. We can define a new
coordinate system using a basis, i.e. n linearly independent vectors v⃗1, v⃗2, . . . v⃗n. Now, let’s say I have a

vector u⃗ which I am representing as


u1
u2
...
un

 measuring with respect to my coordinate system. How can I

translate this to the coordinates you are familiar with? Well, instead of scaling the vectors of the standard
basis, we are now scaling the vectors defining my new basis. Assuming that both of us were thinking of the
same physical point in space, then the vector v⃗ in the standard basis is:

v⃗ = u1v⃗1 + u2v⃗2 + · · ·+ unv⃗n (18)

=

 | | |
v⃗1 v⃗2 · · · v⃗n
| | |



u1
u2
...
un

 (19)

= V u⃗ (20)

Hence, to tranform a vector from my basis to your standard basis involves just a matrix multiplication. This
can be expressed in a diagram given in Figure 2 using the up and down arrows.

x⃗ y⃗

⃗̃x ⃗̃y

A

V −1 V

D

VV −1

Figure 2: Change of Basis Mapping. The top row has everything in the standard basis. The bottom row is in V -basis.
The matrix D is supposed to represent the same linear transformation as A, except that it does so for vectors expressed
in V -basis. It turns out D = V −1AV since vectors are columns. We use tilde-ed coordinates for things in the lower
basis.

Next, let’s see what happens if we have a matrix A that transforms vectors. Consider the 2 × 2 matrix
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example, A =

[
1 2
4 3

]
. We can imagine this matrix is performing a linear tranformation, y⃗ = Ax⃗. The

question is whether there is another basis within which this transformation is much simpler to understand.

What can we wish for? The transformation is doing something nontrivial, and so it is not possible to find a
basis in which the transformation is just the identity matrix. Nor is one going to be found where the matrix
is just the zero matrix. So not all wishes can be fulfilled. What about wishing for a diagonal transformation?
That would certainly be r to understand. But is that a reasonable wish? Let’s see whether it is in this case.

Let’s suppose we had our new basis V so that x⃗ = V ⃗̃x and correspondingly, ⃗̃x = V −1x⃗. Similarly, y⃗ = B⃗̃y
and correspondingly, ⃗̃y = V −1y⃗. Then:

Ax⃗ = AB⃗̃x (21)

= A(x̃1⃗b1 + x̃2⃗b2) (22)

= x̃1Ab⃗1 + x̃2Ab⃗2 (23)

Now, if we chose our new basis to be the ones defined by the eigenvectors of A, then we can simplify:

= x̃1λ1⃗b1 + x̃2λ2⃗b2 (24)

=

 | |
b⃗1 b⃗2
| |

[
λ1 0
0 λ2

][
x̃1
x̃2

]
(25)

= BD⃗̃x (26)

= BDB−1x⃗, (27)

where D is the diagonal matrix of eigenvalues and B is a matrix with the corresponding eigenvectors as its
columns. Thus we have proved that A = BDB−1. Furthermore, this also means that D = B−1AB.

So, our wish can indeed be fulfilled—at least for this specific matrix. In general, the pattern we have used
above will hold whenever we can find an eigenbasis—a full basis consisting of eigenvectors. Why? From the
eigenvalue-eigenvector relationship we have AB =

[
Ab⃗1 Ab⃗2 · · · Ab⃗n

]
=

[
λ1⃗b1 λ2⃗b2 · · · λnb⃗n

]
=

BD. If B is full rank and thus invertible, we can left multiply both sides by B−1 to get:

B−1AB = B−1BD = D =


λ1 0 · · · 0
0 λ1 · · · 0
...

. . .
. . .

...
0 · · · 0 λn


But we know that there also exist matrices for which an eigenbasis does not exist. For those, this trick won’t
work.
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3 How to Solve?
Now that we understand how to convert our systems of differential equations into vector/matrix form, let’s
understand how to solve them. The first thing we should try to do is to use the tools we developed for
the scalar case. But, how can we do this, when our equations seem to be fundamentally dependent on two
independent variables? We wouldn’t have this problem of ‘coupling’ if our A matrix were diagonal. So,
let’s try to change our basis to one where the A matrix does become diagonal.

Note that if our system of differential equations were ‘uncoupled’ to begin with, our A matrix would have
been diagonal. Hence, we could proceed to solve the first order differential equations independently of each
other, as seen in Note 1. Consider the following circuit:

−
+Vin

R2I2

C2

+

−

V2

R1 I1

C1

+

−

V1

Figure 3: Diagonal System

Both the capacitors have been charged to Vin and at t = 0, we set Vin = 0V , and allow the capacitors to
discharge. Hence our initial conditions are V1(0) = V2(0) = Vin. We get the following branch equations:

I1 = −C1
d

dt
V1 =

V1

R1
(28)

I2 = −C2
d

dt
V2 =

V2

R2
(29)

Hence from eq. (28) and eq. (29), we get the following uncoupled differential equation:

d

dt

[
V1(t)
V2(t)

]
=

[
− 1

R1C1
0

0 − 1
R2C2

][
V1(t)
V2(t)

]
(30)

Concept Check: We can easily solve the above system of equations by separately solving for V1 and V2.
Review Note 1 if you are unsure about how to solve for the voltages.

Coming back to our original system, we define x⃗(t) =

[
V1(t)
V2(t)

]
. Then, in eq. (9), we set up the differential

equations as follows:

d

dt
x⃗(t) =

[
−5 2
2 −2

]
x⃗(t) (31)

As discussed, let’s begin by finding a coordinate system in which the transformation represented by this
matrix is simply diagonal.
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First, we must find its eigenvalues, i.e. the roots of its characteristic equation:

det (λI −A) = det

[
λ+ 5 −2
−2 λ+ 2

] (32)

= (λ+ 5)(λ+ 2)− 4 (33)

= λ2 + 7λ+ 6 = (λ+ 6)(λ+ 1) (34)

Solving the above characteristic equation, we get the eigenvalues as λ1 = −6 and λ2 = −1 and hence we

can find a set of eigenvectors as v⃗1 =

[
− 2√

5
1√
5

]
and v⃗2 =

[
1√
5
2√
5

]
. Defining the new basis as V = [v⃗1, v⃗2], we

get the diagonal matrix Λ =

[
−6 0
0 −1

]
.

Hence, we can write A = V ΛV −1 and rewrite eq. (9) as follows:

d

dt
x⃗(t) = V ΛV −1x⃗(t) (35)

=

[
− 2√

5
1√
5

1√
5

2√
5

][
−6 0
0 −1

][
− 2√

5
1√
5

1√
5

2√
5

]−1

x⃗(t) (36)

Let’s perform a change of basis by setting ⃗̃x(t) =

[
x̃1(t)
x̃2(t)

]
= V −1x⃗(t). By left multiplying V −1 on both

sides of eq. (35), we get the following:

V −1 d

dt
x⃗(t) = V −1Ax⃗(t) = V −1V ΛV −1x⃗(t) (37)

=⇒ d

dt
V −1x⃗(t) = Λ⃗̃x(t) (38)

=⇒ d

dt
⃗̃x =

[
−6 0
0 −1

]
⃗̃x(t) (39)

Because V −1 is a constant matrix, we can pull it inside the derivative to go from eq. (37) to eq. (38). In
eq. (39), we have successfully uncoupled our equations and we can proceed to solve them independenly as
mentioned earlier:

d

dt
x̃1(t) = −6x̃1t) (40)

=⇒ x̃1 = k1e
−6t (41)

d

dt
x̃2(t) = −x̃2(t) (42)

=⇒ x̃2 = k2e
−t (43)

Next, we need to solve for our constants k1 and k2. Recall our initial conditions, V1(0) = V2(0) = 1V .

Note 3: Vector Differential Equations, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 9



Note 3: Vector Differential Equations @ 2021-09-11 22:56:12-07:00

Hence, x̃1(0) and x̃2(0) are given by6:

⃗̃x(0) = V −1

[
V1(0)
V2(0)

]
(44)

⇒

[
x̃1(0)
x̃2(0)

]
=

[
− 2√

5
1√
5

1√
5

2√
5

][
1
1

]
(45)

=

[
− 1√

5
3√
5

]
(46)

Hence, k1 = − 1√
5

and k2 = 3√
5
. Now, we can transform back into our original basis as follows to find

V1(t) and V2(t):

x⃗ = V ⃗̃x (47)

=

[
− 2√

5
1√
5

1√
5

2√
5

][
− 1√

5
e−6t

3√
5
e−t

]
(48)

=

[
2
5e

−6t + 3
5e

−t

−1
5e

−6t + 6
5e

−t

]
(49)

For t ≥ 0, we find that V1 =
2
5e

−6t + 3
5e

−t and V2 = −1
5e

−6t + 6
5e

−t. Figure 4 is a plot of our solutions:

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Time (t)

Vo
lta

ge
(V

)

V1(t)

V2(t)

Figure 4: Initial Conditions: V1(0) = 1V and V2(0) = 1V . Homogeneous Case Solution.

Using the same argument, we can see how the voltage will vary with different initial conditions (as shown
in Figure 5):

6Note that in this case, V −1 = V ⊤ = V so when we plug in V −1 below, it’s the same as plugging in V .
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1 2 3 4 5

0.2

0.4

0.6

0.8

1

Time (t)

Vo
lta

ge
(V

)
V1(t)

V2(t)

(a) Initial Conditions: V1(0) = 0V and V2(0) = 1V . Here,
V1(t) = − 2

5
e−6t + 2

5
e−t, and V2(t) =

1
5
e−6t + 4

5
e−t.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Time (t)

Vo
lta

ge
(V

)

V1(t)

V2(t)

(b) Initial Conditions: V1(0) = 1V and V2(0) = 0V . Here,
V1(t) =

4
5
e−6t + 1

5
e−t, and V2(t) = − 2

5
e−6t + 2

5
e−t.

Figure 5: Voltage transients for different initial conditions on the capacitors. The specific solutions are in the subcap-
tions for your reference.

Concept Check: Take a minute to qualitatively reason about the initial increase in voltages in Figure 5.

Now that we have a good understanding of the homogenous case, let’s look at the voltage transients of
charging our two capacitor system. In this case, we have two uncharged capacitors, i.e. V1(0) = V2(0) =
0V , and we apply a voltage Vin = 1V for time t > 0. We get the following equations:

V2 = V1 − I2R2 (50)

I2 = C2
d

dt
V2 (51)

Vin − V1 = I1R1 ⇒ I1 =
Vin − V1

R1
(52)

I1 = I2 + C1
d

dt
V1 (53)

Hence, our matrix differential equation is:

d

dt
x⃗(t) =

d

dt

[
V1

V2

]
=

−(
1

R1C1
+ 1

R2C1

)
1

R2C1
1

R2C2
− 1

R2C2

[
V1

V2

]
+

[
Vin

R1C1

0

]
(54)

=

[
−5 2
2 −2

][
V1

V2

]
+

[
3
0

]
(55)

= Ax⃗(t) + b⃗. (56)

Now the system has a non-homogeneous term which we haven’t seen before, but let’s see if diagonalization
can help us simplify the problem. Letting ⃗̃x(t) = V −1x⃗(t) and using A = V ΛV −1, we plug in:

d

dt
⃗̃x(t) =

d

dt
V −1x⃗(t) = V −1

(
d

dt
x⃗(t)

)
(57)

= V −1
(
Ax⃗(t) + b

)
(58)

= V −1Ax⃗(t) + V −1b (59)
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= V −1AV ⃗̃x(t) + V −1b (60)

= Λ⃗̃x(t) + V −1b. (61)

In this case, recall that from earlier in the notes

A =

[
−5 2
2 −2

]
=

[
− 2√

5
1√
5

1√
5

2√
5

][
−6 0
0 −1

][
− 2√

5
1√
5

1√
5

2√
5

]−1

(62)

so then

d

dt
⃗̃x(t) = Λ⃗̃x(t) + V −1b (63)

=

[
−6 0
0 −1

]
⃗̃x(t) +

[
− 2√

5
1√
5

1√
5

2√
5

]−1 [
3
0

]
(64)

=

[
−6 0
0 −1

]
⃗̃x(t) +

[
− 6√

5
3√
5

]
. (65)

We can thus write the following uncoupled system of differential equations:

d

dt
x̃1(t) = −6x̃1(t)−

6√
5

(66)

d

dt
x̃2(t) = −x̃2(t) +

3√
5

(67)

We already know how to solve these non-homogeneous differential equations! (see Section 4.4 in Note 1):

x̃1(t) = e−6t

(
x̃1(0) +

1√
5

)
− 1√

5
(68)

x̃2(t) = e−t

(
x̃2(0)−

3√
5

)
+

3√
5

(69)

To get a full function for ⃗̃x(t), we need to find ⃗̃x(0). By the definition of ⃗̃x(t),

⃗̃x(t) = V −1x⃗(t) =⇒ ⃗̃x(0) = V −1x⃗(0) =

[
− 2√

5
1√
5

1√
5

2√
5

]−1 [
0
0

]
=

[
0
0

]
(70)

Thus plugging these values in for ⃗̃x(t),

x̃1(t) =
1√
5
e−6t − 1√

5
(71)

x̃2(t) = − 3√
5
e−t +

3√
5

(72)

or, putting it together,

⃗̃x(t) =

[
1√
5
e−6t − 1√

5

− 3√
5
e−t + 3√

5

]
(73)
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Remember, we require x⃗(t), not ⃗̃x(t). By definition of ⃗̃x(t),

x⃗(t) = V ⃗̃x(t) (74)

=

[
− 2√

5
1√
5

1√
5

2√
5

][
1√
5
e−6t − 1√

5

− 3√
5
e−t + 3√

5

]
(75)

=

[
−2

5e
−6t − 3

5e
−t + 1

1
5e

−6t − 6
5e

−t + 1

]
. (76)

Finally, we have V1(t) = 1− 2
5e

−6t − 3
5e

−t and V2(t) = 1 + 1
5e

−6t − 6
5e

−t.
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Figure 6: Initial Conditions: V1(0) = 0V and V2(0) = 0V . Nonhomogeneous Case Solution.

4 Appendix: Algebra for Formation of Matrix Equation
We start with the following equations:

V2 = V1 − I2R2 (77)

I2 = C2
d

dt
V2 (78)

0− V1 = I1R1 ⇒ I1 = − V1

R1
(79)

I1 = I2 + C1
d

dt
V1 (80)

Our goal is to rearrange this into a form where the derivatives of our state quantities (voltages in this case)
are expressed in terms of the voltages themselves and the input voltage.7 Keeping this in mind, we start with

7There are multiple ways to arrive at eq. (5) and eq. (6); this is just one valid sequence of steps.
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the simpler equation to derive:

eq. (78) =⇒ d

dt
V2(t) =

I2
C2

(81)

eq. (77) =⇒ I2 =
V1(t)

R2
− V2(t)

R2
(82)

d

dt
V2(t) =

V1(t)

R2C2
− V2(t)

R2C2
(83)

And now:

eq. (80) =⇒ d

dt
V1(t) =

I1
C1

− I2
C1

(84)

eq. (82), eq. (79) =⇒ d

dt
V1(t) =

I1
C1

−
V1(t)
R2

− V2(t)
R2

C1
(85)

=
−V1(t)

R1

C1
−

V1(t)
R2

− V2(t)
R2

C1
(86)

Simplifying:

d

dt
V1(t) = − V1(t)

R1C1
− V1(t)

R2C1
+

V2(t)

R2C1
(87)

d

dt
V1(t) =

(
− 1

R1C1
− 1

R2C1

)
V1(t) +

1

R2C1
V2(t) (88)

And these two equations (eq. (88), eq. (83)) exactly match eq. (5), eq. (6).
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