
Note 4: Inductors and RLC Circuits @ 2021-09-15 17:40:21-07:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 4: Inductors and RLC Circuits

1 Inductors
Let’s introduce a new passive component, an inductor. This new component will help us design more
interesting circuits and introduce oscillations within our circuits.

1.1 Basics
IL(t)

L

+

−

VL(t)

Figure 1: Example Inductor Circuit

The voltage across the inductor is related to its current as follows:

VL(t) = L
dIL(t)

dt
. (1)

where L is the inductance of the inductor. The SI unit of inductance is the Henry (H). Looking at eq. (1) we
can observe that an inductor behaves as a capacitor with the roles of current and voltage reversed.

Concept Check: The current across the inductor cannot change instantaneously. Why?

Solution: If our current changes instantaneously, then dIL(t)
dt →∞, and from eq. (1) the voltage across the

inductor VL →∞, which is not possible. Hence, our current cannot change instantaneously.

In steady state, when the current flowing through an inductor is constant, there is no voltage drop across the
inductor. This makes sense, since an inductor is essentially a spool of wire wrapped around a conductor.
Similarly, if the current through the inductor is changing, there will be a voltage drop across the inductor.
The energy stored in the inductor turns out to be EL = 1

2LI
2, but we won’t be using this very much in

EECS16B. We are only mentioning it here because it helps us interpret what is happening later.

1.2 Physics behind Inductors
(not in scope for EECS 16B, just for information)

Inductors store energy in a magnetic field. In the same way that a capacitor separates charge (Q) and
this leads to an electric field ( ~E), anytime current flows down a conductor, it creates a magnetic field ( ~B).
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Likewise, the magnetic field can store energy. Their behavior can be described using Faraday’s Law of
Induction.

The magnitude of magnetic field created by a straight wire is pretty small, so we usually use other geometries
if we want to create a useful inductances. A solenoid is a good example, where we wind a wire around a
conductor like a copper rod:

A
IS L

N turns

` L = N2µA
` [H]

Figure 2: The Inductance of a Solenoid: a wire coiled around something.

Note that the inductance (L) depends on geometry and a material property called magnetic permeability
(µ) of the solenoid core material. In the case of the solenoid in 2, the inductance depends on the number
of turns (N ), the length of the solenoid (l) and the area (A) of the loops. Inductors are useful in many
applications such as wireless communications, chargers, DC-DC converters, key card locks, transformers in
the power grid, etc. But in many high speed applications, their presence might be undesirable as they create
delays in the time response of the circuit.

1.3 Equivalence Relations
Now that we have the basics, let’s derive the equivalence relations for series and parallel combinations of
inductors. We will find that these are similar to those of resistors. Why? Because the law governing an
inductor VL = LdIL(t)

dt involves a proportionality constant L that multiplies a current-like quantity to give a
voltage. In a resistor, the resistance R multiplies current to give a voltage.

1.3.1 Series Equivalence

Itest(t)

L1

+

−

VL1(t)

L2

+

−

VL2(t)

Itest

Figure 3: Series Inductor Circuit

Note 4: Inductors and RLC Circuits, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 2



Note 4: Inductors and RLC Circuits @ 2021-09-15 17:40:21-07:00

Let’s apply a dItest
dt through the two inductors, then

VL1(t) + VL2(t) = VL(t)

where, VL(t) is the voltage across the two inductors. From VI relationship for inductors, we get

L1
dItest

dt
+ L2

dItest
dt

= VL(t) (2)

(L1 + L2)
dItest

dt
= VL(t) (3)

Leq
dItest

dt
= VL(t) (4)

where, Leq = L1 + L2.

1.3.2 Parallel Equivalence

IL(t)

IL1(t)

L1

+

−

VL1(t)

IL2(t)

L2

+

−

VL2(t)−
+Vtest

Figure 4: Parallel Inductor Circuit

We apply at Vtest across the parallel combination. We have

VL1(t) = VL2(t) = Vtest(t)

L1
dIL1
dt

= L2
dIL2
dt

= Leq
dIL
dt

and from KCL, we have
IL(t) = IL1(t) + IL2(t)

Differentiating with respect to time, and substituting from the above equality,

dIL
dt

=
dIL1
dt

+
dIL2
dt

(5)

dIL
dt

=
Leq

L1

dIL
dt

+
Leq

L2

dIL
dt

(6)

1

Leq
=

1

L1
+

1

L2
(7)
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2 LC Tank
In our two capacitor circuit example, we found that our eigenvalues were real. But, we could also encounter
a system whose eigenvalues are complex. In this section, we will explore a circuit, commonly known as an
LC tank, whose matrix will have purely imaginary eigenvalues.

In the following circuit, we have an inductor L = 10 nH and capacitor C = 10 pF in parallel. Let IL(0) =
50 mA and Vout(0) = 0 V:

L

IL

C

+

−
Vout

IC

Since the inductor and capacitor are in parallel:

VL = VC = Vout

KCL gives:

IL = −IC = −C dVout
dt

dVout
dt

= − 1

C
IL

VL = Vout = L
dIL
dt

dIL
dt

=
1

L
Vout

Putting it into matrix form, as before: [
dVout
dt
dIL
dt

]
=

[
0 − 1

C
1
L 0

][
Vout
IL

]
(8)

Finding the eigenvalues:

det

[−λ − 1
C

1
L −λ

] = λ2 +
1

LC
= 0 (9)

=⇒ λ1,2 = 0± j
1√
LC

(10)

Next, we can find the eigenvectors of the above matrix as v1 =

j
√

L
C

1

 and v2 =

−j
√

L
C

1

. We can use
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these vectors to transform our coordinates to one where the matrix becomes diagonal. More concretely,

[
Vout
IL

]
=

 | |
v1 v2
| |

[Ṽout
ĨL

]

As discussed before, once in this new coordinates, our system becomes uncoupled, and we can solve for
Vout and IL as follows: dṼout

dt
dĨL
dt

 =

[
j 1√

LC
0

0 −j 1√
LC

][
Ṽout
ĨL

]

=⇒ dṼout
dt

= j
1√
LC

Ṽout

dĨL
dt

= −j
1√
LC

ĨL

=⇒ Ṽout = k̃1e
j√
LC

t

ĨL = k̃2e
− j√

LC
t

Next, we need to find initial conditions in this new coordinate system. Substituting the given values,[
Ṽout(0)

ĨL(0)

]
=

j
√

L
C −j

√
L
C

1 1

−1 [Vout(0)
IL(0)

]

=
1

j20
√

10

[
1 j10

√
10

−1 j10
√

10

][
0

0.05

]

=

[
2.5× 10−2

2.5× 10−2

]

Hence, k̃1 = 2.5 × 10−2 and k̃1 = 2.5 × 10−2. Next, we can tranform back to our original coordinate
system: [

Vout
IL

]
=

[
j10
√

10 −j10
√

10
1 1

][
2.5× 10−2ej

√
10×109t

2.5× 10−2e−j
√
10×109t

]

=

[
j0.25

√
10ej

√
10×109t − j0.25

√
10e−j

√
10×109t

2.5× 10−2ej
√
10×109t + 2.5× 10−2e−j

√
10×109t

]

Concept Check: Write the above sum of exponentials as sine and cosine. Hint: Use the Euler form of sine
and cosine we encountered in the complex number note.

Based on the intuition we have gained above, let’s guess a solution with pure sines and cosines, as follows:

Vout(t) = c1 cos

(
1√
LC

t

)
+ c2 sin

(
1√
LC

t

)
(11)
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Next, plugging in initial conditions to solve for the constants:

Vout(0) = 0 = c1

IC(0) = −IL(0) = −50× 10−3

dVout(0)

dt
=

1

C
Ic(0) =

−50× 10−3

10−11
=

c2√
10−8 × 10−11

c1 = 0

=⇒ c2 = − 5√
10

= −0.5
√

10

=⇒ Vout(t) = −0.5
√

10 sin
(√

10× 109t
)

Notice that the amplitude of Vout is constant.1

Concept Check: Follow the same steps above to find the current, IL(t). Hint: The current will also be of
the form in eq. (11), but with different constants.

Solution:

IL(t) = 50× 10−3 cos
(√

10× 109t
)

Figure 5: Voltage and Current response of LC Tank

Figure 5 plots the above solutions for the capacitor voltage and inductor current. This system is also called
an oscillator because the circuit produces a repetitive voltage waveform under the right initial conditions.

1And, in case the algebra is confusing, the c2√
10−8×10−11

part comes from evaluating the derivative of the output voltage at time

t = 0. That is, d
dt
Vout(t) = c2 cos

(
1√
LC

t
)

, and we know the value for this at t = 0. Plugging in L,C, gives this equation.
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From the above plots, we can see that the current and voltage are 90◦ out of phase, i.e. when the current is at
its maximum or minimum, the voltage is at 0V, and vice versa. What does this mean for the energy stored in
these components? We know that, energy in the capacitor,EC = 1

2CV
2 = 1.25×10−11 sin2

(√
10× 109t

)
and energy in the inductor, EL = 1.25 × 10−11 cos2

(√
10× 109t

)
. Figure 6 plots the these energies. As

you can see, the total energy seems to be sloshing back and forth between the inductor and capacitor.

Figure 6: Energy stored in Inductor and Capacitor. Notice the sum is constant.

3 Finding Initial Conditions for Circuits
When analyzing RLC circuits, it can be very useful to use inspection techniques to understand the initial
conditions for the circuit. For example, if a problem begins with a statement such as "Vin has been 0 V for
all time before t = 0, at which point it turns on and becomes 2 V", it is critical to understand the behavior
of the circuit elements before t = 0.

The transient analysis that we have seen prior to now is closely related to this concept of steady-state condi-
tions, albeit much more general. For example, transient analysis will reveal that the voltage on the capacitor
of an RC circuit decays exponentially when the voltage source turns off. If we want to know the exact
waveform of the decay in this way, then transient analysis (setting up and solving a differential equation) is
required. However, in many cases, we do not need this full level of detail. In situations where the circuit has
been "left alone" for a long time (that is, it has reached steady-state), we can actually solve for certain values
in the circuit, such as capacitor voltages or inductor currents, without solving any differential equations!
Let’s proceed to get some intuition for how this works through common examples.

3.1 RCRC Circuit: Voltage Source On, Steady-State
We will start with the example of a voltage source connected to the following RCRC circuit for a long time.
More precisely, suppose the voltage source has been on at Vin = 3 V for all time t < 0. What are the values
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of the voltages across the capacitors? Recall that when we perform transient analysis, solving the differential
equation gives us the general shape of the waveform (exponential decay, or asymptotically approaching a
specific value), but the initial conditions are necessary to precisely describe the waveform. The values of the
capacitor voltages at t = 0 will set the initial conditions that inform any later analysis.

Here, we can appeal to our intuition for how capacitors behave. They are "sinks" that can hold a fixed
amount of charge, and when they are initially uncharged, the current flowing into them will be high. This
rate of current will slowly decrease as the capacitor voltage increases (approaching its steady-state value);
this phenomenon is what the governing equation IC = C dVC(t)

dt describes. When the capacitor is holding
as much charge Q as it can (a limit that is set according to Q = CV ), no more current can flow into the
capacitor (and by the capacitor current equation, dVC(t)

dt = 0.

We can then find that the capacitors have reached their steady-state voltages when the current through each of
them is zero (I1 = I2 = 0 A). Observing the circuit below, what can we now do to solve for what numerical
value this steady-state voltage is? Let’s approach it with KVL, first forming a loop from clockwise through
the voltage source, R1 and C1. We can see that the equation looks as follows:

Vin − I1R1 − VC1 = 0 (12)

Since I1 = 0, we rearrange and find VC1 = Vin. Nice! Repeating the same process for the second capacitor,
we find:

Vin − I1R1 − I2R2 − VC1 = 0 (13)

And by the same logic (I1 = 0, I2 = 0), we have VC2 = Vin. We now have solved for the initial conditions
of the given circuit, and if a problem statement said, "What would be the capacitor voltages as a function
of time when we turn the voltage source off, and Vin = 0 V for t ≥ 0?", we would be ready to perform the
transient analysis.

−
+Vin

R1 I1

C1

+

−

VC1

R2 I2

C2

+

−

VC2

3.2 RCRC Circuit: Voltage Source Off, Steady-State
There are two ways to approach the question of finding the steady-state capacitor voltages after the voltage
source has been off for a long time. We could follow the same logic in the previous section and find that
VC2 = VC1 = Vin = 0. Or, we could notice that if the voltage source is off, there’s no current in the
circuit! The current in the circuit could not be anything other than 0 A, so the capacitors must have a zero
steady-state voltage. Even if the capacitors once had some nonzero voltage, the voltage source being turned
off means the capacitors would discharge through the resistors (leading to exponential decay of their voltage
over time).

Either way, the capacitors’ steady-state conditions would be that VC2 = VC1 = 0 V if the voltage source
stays off for a long time.
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3.3 RL Circuit: Voltage Source On, Steady-State
Suppose we have the RL circuit shown in fig. 7, with a voltage source that has been on at Vin = 5 V for a
long time. Note that for all t ≤ 0, the inductor is connected only to the voltage source (the right switch is
open, so the resistor is not connected here). What is the steady-state current through the inductor?

−
+Vin

S1 R1

+ −
VR1

L

+

−

VL

Il

S2

R2

+

−

VR2

Figure 7: Inductor in series with a resistor and voltage source.

This is a good chance to review some fundamentals of inductor behavior, which are likely less familiar to
you than the properties of capacitors. The inductor’s governing equation is VL(t) = LdIL(t)

dt , in which the
voltage and current play opposite roles as compared to the capacitor equation. Here, if the voltage source has
been constant for a long time, what does that mean for the steady-state current and voltage of the inductor?

While we could write out KVL, form a non-homogeneous differential equation, and solve for the current
after a long time by plugging in t = ∞, we can also try and approach the steady-state question using
intuition about inductors. Inductors will have no voltage drop across them once their current reaches steady-
state because the rate-of-change of current in steady-state is zero (dIL(t)dt = 0). So, let’s use this information
to work backwards.

In steady-state, VL = 0 V. Then, by KVL, the entire voltage drop of the source must be across R1. So the
current in the loop is VS

R1
by Ohm’s Law. Finally, we can write that the current in the inductor must be the

same constant, VSR1
, in the steady-state.

3.4 RL Circuit: Source Off, Steady-State
Suppose that we now flip a switch after reaching the steady-state solved for above, and IL(0) = VS

R1
. Flipping

the switch disconnects the voltage source andR1, and connectsR2 to L. A diagram of this is shown in fig. 8.
Now, what is the new steady-state current and voltage of the inductor?2

We can approach this question with our intuition; writing KVL (carefully noting passive sign convention for
the inductor, and element polarities), we find:

−VL(t) + VR(t) = 0 (14)

−VL(t) + IR(t)R2 = 0 (15)

−LdIL(t)

dt
− IL(t)R2 = 0 (16)

2Note that to go from the inductor steady-state conditions to those for the resistor, we write KCL and KVL. KCL dictates that
the currents must be the same magnitude; KVL dictates that the voltages must be equal and opposite.

Note 4: Inductors and RLC Circuits, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 9



Note 4: Inductors and RLC Circuits @ 2021-09-15 17:40:21-07:00

−
+Vin

S1 R1

+ −
VR1

L

+

−

VL

Il

S2

R2

+

−

VR2

Figure 8: Inductor in series with a resistor.

−LdIL(t)

dt
= IL(t)R2 (17)

dIL(t)

dt
= −R2

L
IL(t) (18)

Note that IL(t) = −IR(t) by KCL at the bottom node, since the resistor’s current direction is set by passive
sign convention and therefore points down.

This is a homogenous differential equation for IL(t)! We can see that the solution is an exponential, and

after considering the initial condition of IL(0) = VS
R1

A, we find that IL(t) = VS
R1

e−
R2
L
t. Then, since VL(t) =

LdIL(t)
dt , we can also see that VL(t) = VS

R1
LR2
L e−

R2
L
t = VS

R2
R1

e−
R2
L
t. Since the inductor is connected only to

another passive element (R2), both its voltage and current will decay exponentially, and after enough time
the (steady-state) current and voltage will both equal 0.

One final note; we have seen in previous circuit problems that when a current source is attached to a capac-
itor, the voltage on that capacitor increases without bound (IC = C dVC(t)

dt and so if IC is constant, the rate
of increase of VC is constant). Similarly, we can use the inductor equation VL(t) = LdIL(t)

dt to see that if
we connect a voltage source to an inductor, that inductor’s current will also increase without bound. This
is why we had to include a resistor R1 in the circuit above to induce a steady-state current; without it, there
would be no steady-state!

4 RLC Circuits and Higher Order Differential Equations
The LC tank we studied in the previous section was a very ideal case where we assumed there was no resistor
in the system. But this is rarely the case, and we will need to understand how adding this third component
will modify our differential equations.

To motivate our discussions, consider the following circuit, with component values Vs = 4V, C = 2fF,
R = 60kΩ, and L = 1µH. Before t = 0, switch S1 is on while S2 is off. At t = 0, both switches flip state
(S1 turns off and S2 turns on):
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−
+ Vs

t = 0

S1

t = 0S2

C

+ −
VC

i
R

+ −
VR

L

+ −
VL

This is something that you will work out for yourself in the homework. The key is simply to follow the
steps marking anything with a derivative on it as a state variable, writing out the differential equations, and
solving the system.
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