
Note 7: Transfer Function Plots @ 2021-10-01 18:48:02-07:00

EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 7: Transfer Function Plots

Overview
Having analyzed our first order filters and gone through a design example in the previous Note to show why
filter design is important, we will now plot their transfer functions H(jω) (or frequency responses). In the
previous Note, we generated tables of

∣∣H(jω)
∣∣, ]H(jω) at certain key values of ωc, and while this gave

some intuition, it didn’t really show what happens at intermediate frequencies. There is immense value in
visualizing transfer functions across a wide range of frequencies.

In the next note, we will introduce the concept of piecewise-linear numerical approximations to these plots,
called Bode Plots. These will not only prove useful in plotting a filter’s frequency response by hand (as
opposed to with a computer or plotting software), but will also help us better understand filter behavior.

1 Transfer Function Plots
When we plot transfer functions, we plot the frequency and magnitude on logarithmic scales (called log-log
plots), and the phase angle is plotted on a linear scale, in either degrees or radians. We use the logarithmic
scale because it allows us to break up complex transfer functions into its constituent components, which
makes plotting by hand much easier. Let’s start by generating transfer function plots for low-pass and high-
pass first-order filters, which will build our intuition. We will soon see how the analysis of more complex
transfer functions can be broken down into parts.

1.1 Low-pass Filter
Recall our generalized model of a low-pass filter (perhaps RC or LR) as described in the previous note:

HLP(jω) =
1

1 + jω/ωc
(1)

We plot the magnitude of the frequency response in fig. 1 assuming ωc = 106 (on log-log scales).

Note how
∣∣HLP(jω)

∣∣ is very close to 1 for ω < ωc and
∣∣HLP(jω)

∣∣ starts dropping off with slope −1 after
ωc. We can observe 3 distinct regions on the plot, which are defined in terms of an important quantity
— the circuit’s cutoff frequency. See the previous note for a recap of the cutoff frequency definition and
significance.

• ω � ωc: =⇒ jω/ωc ≈ 0. So, HLP(jω) ≈ 1 and
∣∣HLP(jω)

∣∣ ≈ 1.

• ω = ωc: =⇒ H(jωc) =
1

1+j . So,
∣∣HLP(jωc)

∣∣ = 1√
2
.1

1Hopefully, after some exposure to complex numbers, it is more clear now how|1 + j| =
√
12 + 12 =

√
2.
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Figure 1: RC low-pass magnitude plot.

• ω � ωc: =⇒ ω/ωc � 1. Therefore HLP(jω) ≈ −jωc
ω . So,

∣∣HLP(jω)
∣∣ ≈ ωc

ω . On a log scale, this
means that log

∣∣HLP(jω)
∣∣ ≈ logωc − logω explaining behavior of dropping off with slope −1.2

Now, let’s plot the phase of HLP(jω) in fig. 2 (on a log-linear scale).
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Figure 2: RC low-pass phase plot.

]HLP(jω) is very close to 0 for ω < 0.1ωc and ]HLP(jω) is approximately −π
2 for ω > 10ωc. The reason

why we examine the specific regions below will become clearer in the next Note, on linear approximations.

• ω � 0.1ωc =⇒ jω/ωc ≈ 0. So, HLP(jω) ≈ 1 and ]HLP(jω) ≈ 0.

• ω = 0.1ωc =⇒ HLP (0.1jωc) =
1

1+j 0.1 and ]HLP(0.1jωc) ≈ −6◦.3

• ω = ωc =⇒ HLP (jωc) =
1

1+j and ]HLP(jωc) = −45◦.

• ω = 10ωc =⇒ HLP (10jωc) =
1

1+j 10 and ]HLP(10jωc) ≈ −84◦.

• ω � 10ωc =⇒ ω/ωc � 10. So, HLP(jω) ≈ −j · 0 4 and ]HLP(jω) ≈ −90◦.

We can now better understand the values of the magnitude and phase at 0.1ωc, ωc, 10ωc (as seen in the tables
of the previous note).

2Recall that the line y = mx+ b has slope m. In this case y = log
∣∣HLP(jω)

∣∣ and x = log|ω|.
3This value comes from how ] z1

z2
= ]z1−]z2, and ]a+ jb = atan2(b, a). So here, we have atan2(0, 1)−atan2(0.1, 1) =

−5.71◦ ≈ −6◦
4The magnitude will always be slightly greater than 0, meaning its phase will still be very close to −90◦
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1.2 High-pass Filter
We can similarly analyze our generalized high-pass filter model (CR, RL):

HHP(jω) =
jω/ωc

1 + jω/ωc
(2)

Plotting the magnitude of the frequency response, again assuming ωc = 106, yields fig. 3.
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Figure 3: RC high-pass magnitude plot.

Here,
∣∣HHP(jω)

∣∣ rises with slope 1 for ω < ωc and
∣∣HHP(jω)

∣∣ ≈ 1 after ωc. We analyze the plot in the same
3 regimes as before (smaller than, equal to, and larger than ωc):

• ω � ωc, then ω/ωc � 1. Therefore HHP(jω) ≈ j ωωc
which implies

∣∣HHP(jω)
∣∣ ≈ ω

ωc
. On a log scale,

this means that log
∣∣HHP(jω)

∣∣ ≈ logω − logωc, which explains the rising slope of 1.

• ω = ωc, then H(ωc) =
j

1+j meaning
∣∣HHP(jωc)

∣∣ = 1√
2

• ω � ωc, then ω/ωc � 1. Therefore HHP(jω) ≈ 1 which implies
∣∣HHP(jω)

∣∣ ≈ 1.

Now let’s plot the phase of the transfer function HHP(jω).
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Figure 4: RC high-pass phase plot.

]HHP(jω) is very close to π
2 for ω < 0.1ωc and ]HHP(jω) is approximately 0 for ω > 10ωc.

• ω � 0.1ωc =⇒ jω/ωc ≈ 0. So, HHP(jω) ≈ 0 (but slightly positive) and so ]HHP(jω) ≈ 90◦.

• ω = 0.1ωc =⇒ HHP (0.1jωc) =
j 0.1

1+j 0.1 and ]HHP(0.1jωc) ≈ 84◦.
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• ω = ωc =⇒ HHP (jωc) =
j

1+j and ]HHP(jωc) = 45◦.

• ω = 10ωc =⇒ HHP (10jωc) =
j 10

1+j 10 and ]HHP(10jωc) ≈ 6◦.

• ω � 10ωc =⇒ ω/ωc � 10. So, HHP(jω) ≈ 1 and ]HHP(jω) ≈ 0◦.

2 Second Order Filters (Cascading)
We will now consider more complex systems and, in doing so, see the value in appropriate visualizations
for transfer function behavior.

2.1 Band-Pass Filters
With the knowledge of low-pass filters that block out higher frequencies and high-pass filters that block out
lower frequencies, how could we build a filter that lets a specific range of frequncies through? One idea
could be to take the output of the low-pass filter and treat it as an input to the high-pass filter.

−

+
RL

CL

vcenter(t), Ṽcenter
vin(t), Ṽin

CH

RH

vout(t), Ṽout

Figure 5: A Buffered Band-Pass filter, composed of low-pass and high-pass filter components.

Notice the op-amp serving as a unity gain buffer between the two filters. It is introduced to prevent the
second circuit from loading the first.

The input voltage phasor is Ṽin at some frequency ω. Suppose the two filters have cutoff frequencies ωLP

and ωHP, respectively. Thus, we can write that:

Ṽcenter = HLP(jω)Ṽin (3)

Since vcenter(t) is the second filter’s input, the output voltage phasor Ṽout is:

Ṽout = HHP(jω)Ṽcenter = HHP(jω)HLP(jω)Ṽin (4)

Thus, the net transfer function HBP(jω) is:

HBP(jω) = HLP(jω)HHP(jω) (5)

More generally, placing filters in series produces a circuit whose transfer function is the product of the
individual transfer functions. Similarly, for ]HBP(jω), we can again plot the sum, ]HLP(jω)+]HHP(jω).

We can compute HBP(jω) symbolically as:

HBP(jω) = HLP(jω)HHP(jω) =
1

1 + jωRLCL
· jωRHCH
1 + jωRHCH

(6)
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To find the cutoff frequencies of this filter, we can look at the points at which HBP(ωc) =
1√
2
. But based on

our approximations from before and from the cuttof frequencies ωLP = 1
RLCL

and ωHP = 1
RHCH

, we can
approximate

∣∣H(ωjLP)
∣∣ ≈ 1√

2
· 1 and

∣∣H(jωHP)
∣∣ ≈ 1 · 1√

2
. This approximation holds best when the cuttof

frequencies are spaced apart.

We’ve shown a convenient result! The cutoffs for the band-pass filter are identical to the individual cutoffs
for the low and high-pass filters. We now plot HBP(jω) with ωLP = 106 and ωHP = 104 to demonstrate
the band-pass behavior. This is the approximate shape of the band-pass filter we constructed in the previous
note, with a high-pass and low-pass filter.
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Figure 6: BP magnitude plot.

2.2 Low-Pass Filters
From our analysis of low-pass filters, we saw that

∣∣H(jω)
∣∣ dropped off by a factor of 10 for each factor-of-10

increase in frequency after ωc. This is a desirable effect, but ideally, we would like to build a filter that drops
off at a quicker rate after ωc. Therefore, let’s try cascading two low-pass filters of identical cutoff with a
buffer in between. The diagram is exactly like our band-pass filter from before, but with 2 low-pass filters
instead of a high-pass and a low-pass.
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Figure 7: A Buffered Second Order Low-Pass filter. To achieve fast roll-off after ωc, we must use R,C values that
generate the same cutoff in each stage (same RC product). Here, we achieved this condition by setting R and C to be
the same values in both filters.

With similar analysis as for the band-pass filter:

HLP(jω) =
1

(1 + jωRC)2
(7)

We can see that it does indeed drop off at a quicker rate (with slope 2 after the cutoff ωc.).

Note 7: Transfer Function Plots, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 5



Note 7: Transfer Function Plots @ 2021-10-01 18:48:02-07:00

3 Higher Order Transfer Functions Plots
The previous section talked about second order filters (with 2 filter stages), but we can generalize similar
logic to figure out what happens when we cascade an arbitrary number of stages.

3.1 Cascading More Low-Pass Filters: Example
For example, let’s generalize the second order low-pass filter to see what happens when we add more stages
with the same cutoff frequency. Why would we want to do this? Well, in the example plot of fig. 8,
suppose that we had noise at the input we wanted to reject at ωnoise = 1× 107 rad

s . Using a single stage
gives us attenuation by a factor of 10 (magnitude of the first-order low-pass transfer function with cutoff
ωc = 1× 106 rad

s is 1
10 at ωnoise). 10% of the noise is still a decent portion, we may want better rejection.

The plots in fig. 8 show what happens to the magnitude of the overall transfer function as we add more than
1 stage.
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Figure 8: Plots of cascaded LP filters (varying numbers).

From fig. 8, we see that the "actual" cutoff frequency seems to be shifting as a result of the accumulation of
stages. Specifically, if we define the cutoff frequency to be the point where we have a 1√

2
(or −3 dB)drop-

off, this will shift to the left as we add more stages. However, we won’t worry about this for now; we
could compensate for this in various ways using specific filter variations, which aren’t in scope here. The
main important aspect of the overall circuit to check is how much the cascading attenuates the desired input
signal, which will vary depending on the signal frequency. For certain designs, we may need to compromise
between attenuating noise and retaining signal.

3.2 Generalized Composition of Buffered Filter Stages
If we have some number n of transfer functions H1(jω), H2(jω), H3(jω), ...,Hn(jω) and we define the
overall transfer function H(jω) as the product of them all (H(jω) = H1(jω) ·H2(jω) · ... ·Hn(jω))∣∣H(jω)

∣∣ = ∣∣H1(jω) ·H2(jω) · ... ·Hn(jω)
∣∣ (8)

=
∣∣H1(jω)

∣∣ ·∣∣H2(jω)
∣∣ · ... ·∣∣Hn(jω)

∣∣ (9)

=

i=n∏
i=1

∣∣Hi(jω)
∣∣ (10)

]H(jω) = ](H1(jω) ·H2(jω)) · ... ·Hn(jω)) (11)
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= ]H1(jω) + ]H2(jω) + ... + ]Hn(jω) (12)

=
i=n∑
i=1

]Hi(jω) (13)

In the next note, we will see how to convert this multiplication of transfer functions in a log scale into an
addition of transfer functions in a linear scale (as a result of the properties of logarithms), and this will make
hand-composition of transfer function plots easier.

All of the methods we have used thus far to combine and plot transfer functions require us to use a computer,
or some kind of plotting software, to get a reasonsably accurate result. In the next note, we will develop
a useful technique for plotting such transfer functions by hand, called the Bode Plot (or piecewise-linear)
approximation. A lot of that content may feel like review from this note. This process is of great use in
performing filter design for various applications, as it enables concrete understanding of how to take several
simple filter stages and combine them together to achieve some desired goal (much as we did in composing
the band-pass filter in this note).

4 Further Design Considerations and Examples
In this section, we will outline some key facts to keep in mind about selecting filter stages, and their corre-
sponding cutoff frequencies. Some of this content may have been covered in previous notes, but hopefully
this serves as a concrete reference. It is recommended to read the Design Example section in the previous
note before proceeding.

The general practical application for which we want to use analog filters is when our input signal has sources
of noise which are at different frequencies from the signal of interest.5 In this case, we can apply a cascade
of filters, where the cutoff frequencies are selected to keep as much of the desired signal as possible while
rejecting (attenuating the magnitude of) the undesired signals as much as possible.

The simplest scenarios involve two frequencies, where one is desired (say ωsig) and the other is noise
(ωnoise). If ωsig > ωnoise, then we use a high-pass filter. Conversely, for ωsig < ωnoise, we choose a
low-pass filter.

Suppose that for some situation, we have ωsig = 1× 103 rad
s and ωnoise = 40× 103 rad

s , and so we know to
use a low-pass filter. How do we choose the cutoff though? There is always a tradeoff between rejecting the
noise and keeping the signal, so different applications have to be considered individually. For example, sup-
pose your analog-to-digital converter requires a minimum signal amplitude of 10mV after analog-filtering
out noise. If your signal has an input amplitude of 1mV and you have an op-amp to apply a gain of 12
afterwards, then you will meet the 10mV threshold.

However, this also means that your analog filter cannot attenuate the signal too much; if the amplitude of
the filtered signal is only 0.707mV (which will happen if your filter has a cutoff frequency directly on
the signal frequency with ωsig = ωc), then after applying a gain of 12, your signal has an amplitude of
≈ 8.5mV < 10mV. As a result, we can solve for the minimum low-pass cutoff frequency that will still
keep our signal above the required magnitude of 10

12mV (so it’s exactly 10mV after being gained up by the
op-amp.) ∣∣H(jωsig)

∣∣ = 0.83 (14)

5At the moment, if sources of noise have the same frequency as our, our current filtering techniques will find it challenging to
handle. We will discuss situations in which filtering can actually help reject the undesired frequencies.
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=
|1|∣∣∣1 + j
ωsig

ωc

∣∣∣ (15)

=
1√

12 +
ω2
sig

ω2
c

(16)

=⇒ ωsig

ωc
= 0.67 (17)

=⇒ ωc
ωsig

= 1.49 (18)

What does this mean? Well, we solved for how large the cutoff frequency ωc had to be in comparison
to ωsig to ensure the signal stayed above a certain magnitude, and we now have a concrete ratio based on
our ADC’s physical constraints. That is, if ωsig = 1× 103 rad

s and ωnoise = 40× 103 rad
s , and we set

our low-pass cutoff frequency to be ωc = 1.49× 103 rad
s , then our ωsig amplitude at the output will be

exactly 10mV as desired. What happens to the magnitude of the noise? We can compute this explicitly as∣∣H(jωnoise)
∣∣ = |1|∣∣∣1+j

ωnoise
ωc

∣∣∣ = 0.0359. This means we’ve only passed through about 3.6% of the noise, while

keeping the requisite magnitude of signal. Not bad!

Now, we can consider motivate the need for higher-order filters by considering a variation of this problem,
where ωnoise is much closer to ωsig (say, 6× 103 rad

s ). Now, we need a more aggressive rejection of the noise,
because our previous scheme would keep nearly |1|∣∣∣1+j

ωnoise
ωc

∣∣∣ = 24.1% of the noise, which might be too much

if the noise magnitude is about equal to signal magnitude. The way to achieve this more aggressive rejection
is by cascading multiple low-pass filters with the same cutoff, each separated by a unity-gain buffer. The
overall transfer function will become

∣∣H(jω)
∣∣ = 1(

1+j ω
ωc

)n , and we can choose the smallest n6 that suffices

to achieve sufficient rejection of the noise while also maintaining the signal amplitude. This may also require
tuning the cutoff frequency of the base low-pass filter to make sure we meet all the requirements, or we may
need a stronger op-amp with higher gain after the filter, to allow for more signal attenuation.

4.1 Cutoff Frequency Selection: Rule of Thumb
The above analysis makes sense in tightly-constrained scenarios, but what’s a good rule of thumb to start
with? We step back and think about the goal. With something like a low-pass filter, we want to effectively
keep as much of the signal as possible (have ωc be far away from ωsig) while also rejecting the noise as much
as possible (have ωc be far away from ωnoise). Clearly, these are competing effects, because our analysis and
intuition from before tell us that ωsig ≤ ωc ≤ ωnoise for situations where a low-pass filter makes sense.

Now, the most balanced approach to take is to make ωc be the same distance from the signal and noise
frequencies, but this distance must be computed in the log-scale. Recall that when we discuss concepts like
slope, we are speaking about the log-log magnitude plot. So, what’s the analogous quantity to the arithmetic
midpoint on a log scale? It’s the geometric mean. That is, we may choose the following cutoff frequency as
a rule of thumb to start design:

ωc =
√
ωsig ωnoise (19)

Now, all of the methods we have used thus far to combine and plot transfer functions require us to use a
computer, or some kind of plotting software, to get a reasonably accurate result. In the next note, we will
develop a useful technique for plotting such transfer functions by hand, called the Bode Plot (or piecewise-

6Remember, hardware costs money! We shouldn’t use more stages than needed, when possible.
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linear) approximation. A lot of that content may feel like review from this note. This process is of great
use in performing filter design for various applications, as it enables concrete understanding of how to take
several simple filter stages and combine them together to achieve some desired goal (much as we did in
composing the band-pass filter in this note).

4.2 Decibels Scale
We define the decibel as the following:

20 log10(|H(jω)|) = |H(jω)| [dB] (20)

The origin of the decibel comes from looking at the ratio of the output and input power of the system. It is
also partially a value purely arising from convention, and the days of using slide rules as computation aids.

∣∣H(jω)
∣∣ [dB] = 10 log

∣∣∣∣Pout

Pin

∣∣∣∣ = 10 log

∣∣∣∣VoutVin

∣∣∣∣2 = 20 log

∣∣∣∣VoutVin

∣∣∣∣ (21)

This means that 20 dB per decade is equivalent to one order of magnitude. This scale is particularly useful
when performing multiplication of magnitudes as additions in the decibel scale, as seen in discussion and
homework.

Appendix A Time Constant
When computing the cutoff frequency for a first order low-pass filter, we noticed that the ωc = 1

RC = 1
τ .

Here, we draw the connection between time constants and cutoff frequencies.

Recall from the note on differential equations that we defined the time constant of a first-order circuit to
be the point at which the response vC(t) to a constant input was 1 − e−1 away from its steady state value.
With this in mind, let’s try plugging in an exponential input vin(t) = V0e

jωt into an RC circuit and see what
happens.7

vin(t)

R

C

+

−

vout(t)

The differential equation for this circuit is

d

dt
vout(t) = λ

(
vout(t)− V0ejωt

)
(22)

for λ = − 1
τ . In Note 3 we showed that the steady state value of this differential equation is

vss(t) =
−λ

jω − λ
V0e

jωt (23)

7We should be inputting vin(t) = V0 cos(ωt) but we choose ejωt since it provides the same result while simplifying the math.
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Therefore, plugging in for λ = − 1
τ , it follows that

vss(t) =
1

1 + jωτ
V0e

jωt (24)

Notice that H(ω) = 1
1+jωτ and the cutoff arises naturally as ωc = 1

τ . We can also realize that at steady
state, H(ω) is in fact the eigenvalue for the differential equation with eigenfunction ejωt. This is a crucial
connection between differential equations and the frequency response of a linear system that you will see in
later half of the course and in courses like EE120.
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