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EECS 16B Designing Information Devices and Systems II
Fall 2021 Note 8: Bode Plots

Overview
In this note, we introduce the concept of Bode Plots, which are piecewise-linear approximations to transfer
function plots. These will not only prove useful in plotting a filter’s frequency response by hand (as opposed
to with a computer or plotting software), but will also help us better understand the behavior of cascaded
filters. This note will likely feel like review from the Transfer Function Plotting Note, and much of the later
content is optional. Bode Plots are quite useful for performing filter design by hand quickly for various
applications.

This note will present 2 key ideas, which build on what you’ve learned about Tranfer Functions.

• Linear Approximations: Linear approximations applied to a transfer function plot define a Bode Plot,
and this is where the key benefit comes in with respect to design.

• y−axis scaling: For the magnitude plot, we will define a transformation of the axes from the "standard
log scale" (powers of 10) into the decibel scale. This change is to make some of the graphical aspects
of Bode Plot compositions easier.

1 Bode Plots
First, we will handle the modification in the scale of the magnitude plot’s axis from a logarithmic scale
(10−1, 100, 101, 102, ...) to an adjusted linear, decibel scale (−20, 0, 20, 40, ...). That is, instead of plotting∣∣H(jω)

∣∣ vs. ω where the y-axis is on a logarithmic scale, we plot 20 log10(
∣∣H(jω)

∣∣) vs. ω instead, and now
the y-axis is on a linear scale. This linear scale is referred to as the decibel scale because of the multiplication
by 20.1
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1The reason the constant 20 is used is explained in the previous note; it’s an artifact of convention.
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1.1 Low-Pass Filter
As a reminder, our low-pass filter has the following form:

HLP(jω) =
1

1 + jω/ωc
(1)

1.1.1 Low-Pass Filter: Magnitude Bode Plot

In addition to plotting the magnitude of the frequency response (that is, the exact transfer function mag-
nitude), we would like to develop a piecewise-linear approximation as well. A lot of the mathematical
groundwork has been laid in Note 7, where we discuss the different regions of the plot (ω � ωc, ω = ωc,
ω � ωc) and convey the connection between the logarithm properties and slopes of the lines. Here, we will
supplement this with a graphical approach.

There are 2 distinct regions of the magnitude plot to examine from the perspective of piecewise-linear
segments. At frequencies much below the cutoff ω � ωc, the magnitude plot is effectively a horizontal line.
So, we can draw that with a dashed segment. For frequencies much larger than cutoff ω � ωc, we have a
line with a decreasing slope (of -1). We similarly draw this asymptote, dashed. At this point, we have a plot
as shown in fig. 1. Note the use of 2 equivalent y−axes; on the left is the log scale that we’ve used in prior
notes, and on the right is the decibel scale introduced in this note.
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Figure 1: Low-pass filter magnitude plot, with 2 asymptotes drawn (dashed).

Now, once we plot these both, there is a point of conflict in the middle, right around ωc. In this region,
we will join the two models at a point, and pick the corresponding model for a given region (horizontal for
ω < ωc, sloped for ω > ωc.) This means our final Bode Plot for the magnitude of a low-pass filter is as
shown in fig. 2.

Why do we pick this approach? Well, let’s first outline the problem in a bit more detail. Around ωc, the
sloped line claims that the magnitude at frequencies lower than ωc should keep increasing, whereas the
horizontal line in that region claims the magnitude is straight. Similarly, the horizontal line claims that the
magnitude at frequencies higher than ωc should stay constant, whereas the sloped line in that region claims
the magnitude is decreasing. How do we resolve this difference?
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Figure 2: Low-pass filter magnitude plot.

What we do here is default to unilaterally picking the model that is better for a given region. That’s why we
abruptly transition from one regime to the other; at ωc − ε for some small ε, the straight line is better, so
we pick that curve. At ωc + ε, we’re now closer to the sloped model, so we start to slope down. This is to
maintain simplicity while staying true (within bounded error) to the actual plot, which we know the shape
of.

Can we be more precise about this bound on the error? It is a factor of 1√
2
, and this occurs right at the cutoff

frequency. In other words, using the Bode Plot approximation will be inaccurate by at most 30%, and this
level of inaccuracy arises at frequencies ω that are "close" to the cutoff frequency ωc. It is a common rule of
thumb to say that Bode Plot is correct for frequencies at least a factor of 10 away from cutoff; for anything
within 0.1ωc to 10ωc, it’s safest to evaluate the transfer function exactly when possible.) The farther away
we are from ωc, the better the approximation will be, as seen in the plot.

1.1.2 Low-Pass Filter: Phase Bode Plot

Now, let’s perform the same approximation process for the phase plot of a low-pass filter’s transfer function
(to arrive at the Bode Plot for the phase of a low-pass filter). In this case, there are 3 regions to examine.
At frequencies much below the cutoff ω � ωc, the phase plot is effectively a horizontal line with value 0◦.
So, we can draw that with a dashed segment. For frequencies much larger than cutoff ω � ωc, we have a
horizontal line with value −90◦. Finally, there is the middle transition region during which we curve from
0◦ at low frequencies down to −90◦ at high frequencies. For this region too, we will use a line.

However, there’s a point of subtlety here; how do we choose the slope of this line? The piecewise-linear
approximation in this linear region should probably go through−45◦ at ω = ωc, since this is exactly correct
based on the true transfer function plot. But, where will this line intersect the other two horizontal lines?
Should it be at 5ωc and ωc

5 ? 15ωc and ωc
15 ? It isn’t immediately clear what’s best. For design simplicity, we

will choose to model the region between 10ωc and ωc
10 with this line. This is consistent with our reasoning

and prior approach; even back in the Filters note when we began analyzing transfer functions, our tables of
values used 0.1ωc and 10ωc, so the concept is hopefully faimilar.

Why a factor of 10 exactly in the first place? There are several valid reasons, but the most important one
is design simplicity. The log scale for the frequency axis is naturally divided into increments of 10. This
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means that even if our cutoff frequency for some filter isn’t at a clean multiple of 10 (for example, suppose
ωc = 6× 106 rad

s ), we can easily sketch2 the phase plot to be horizontal until 6× 105 rad
s , sloping down to

connect 0◦ and −90◦ between 6× 105 rad
s and 6× 107 rad

s , and then again horizontal after 6× 107 rad
s . We

cannot do this easily with alternatives (like factors of 7 or 12.)

At this point, we have a plot as shown in fig. 3, with the 3 asymptotes drawn. The y−axis is already linear
in degrees3, so we don’t have a decibel scale or anything.
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Figure 3: Low-pass filter phase plot, with 3 asymptotes drawn (dashed).

Once we join the asymptotes in their corresponding regimes, as discussed above, we arrive at fig. 4 for the
Bode Plot of a low-pass filter’s phase.
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Figure 4: Low-pass filter phase plot.

2Keep in mind, these are for hand-drawings when we do design!
3Such plots could easily be formulated in terms of radians too.
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1.2 High-Pass Filter
We can similarly analyze our generalized high-pass filter model:

HHP(jω) =
jω/ωc

1 + jω/ωc
(2)

All of the same reasoning as for the low-pass filter holds here but in "reverse," so for succintness, we
will directly draw the Bode Plots for the high pass filter’s magnitude (fig. 5) and phase (fig. 6) assuming
ωc = 106.
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Figure 5: High-pass filter magnitude plot.
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Figure 6: High-pass filter phase plot.
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2 Plotting Linear Approximations of General Tranfer Functions

2.1 Composing Transfer Functions
For two transfer functions H1(jω) and H2(jω), if H(jω) = H1(jω) ·H2(jω),

log
∣∣H(jω)

∣∣ = log
∣∣H1(jω) ·H2(jω)

∣∣ = log
∣∣H1(jω)

∣∣+ log
∣∣H2(jω)

∣∣ (3)

]H(jω) = ](H1(jω) ·H2(jω)) = ]H1(jω) + ]H2(jω) (4)

As a consequence, when plotting
∣∣H(jω)

∣∣ on a decibel scale plot, we can simply plot
∣∣H1(jω)

∣∣ and
∣∣H2(jω)

∣∣
and add them (unlike with a log-log plot where we have to pointwise-multiply transfer functions of each
stage to arrive at an accurate overall transfer function). This holds too for the transfer functions’ Bode plots.

This is all that you are expected to understand in scope for 16B.

3 Rational Transfer Functions [Optional: not in 16B scope]
When we write the transfer function of an arbitrary circuit involving linear circuit elements, it can always
be rearranged to take the following form, called a "rational transfer function:"

H(jω) = K · N(jω)

D(jω)
(5)

where the numerator N(x) is a polynomial and so is the denominator D(x).

The reasons for this rational form always emerging are themselves interesting, and related to the problem
on the HW where you work with a phasor style derivation with a system of differential equations expressed
in vector-matrix form. Basically, it is a consequence of how determinants and matrix inverses behave.
The full reasons for this are just outside of mathematical accessibility given 16B’s mathematical maturity
assumptions and so you can view this as an empirical observation for now. But this is partially why this
entire section is outside of 16B’s scope.

We like to factor the numerator and denominator so that they become easier to work with and plot:

H(jω) = K · N(jω)

D(jω)
= K

(jω)Nz0
(
1 + j ω

ωz1

)(
1 + j ω

ωz2

)
· · ·
(
1 + j ω

ωzn

)
(jω)Np0

(
1 + j ω

ωp1

)(
1 + j ω

ωp2

)
· · ·
(
1 + j ω

ωpm

) . (6)

The above is a consequence of the Fundamental Theorem of Algebra which asserts that all polynomials
with complex coefficients can be factored into monomials — i.e. all complex polynomials of degree d
have exactly d roots, if one counts repetitions. This is a theorem that you have probably seen asserted, but
is usually only properly proved in upper-division mathematics courses — for example, complex analysis:
Math 185.

The above factorization is interesting because it says that no matter what, we can think of a transfer function
as though it were a composition of elementary filters connected by unity-gain buffers. Mathematically,
because polynomials might in principle have no constant terms, we need to deal with two more new objects
that don’t correspond to the simple low-pass and high-pass filters that we have seen so far.

To summarize the components, each transfer function is the product of constant gainK, one or more "origin
poles" ((jω) in the denominator) or "origin zeros" ((jω) in the numerator) — these are the two new things
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— and one or more “poles” (
(
1 + j ω

ωpi

)
in the denominator) or “zeros” (

(
1 + j ω

ωzi

)
in the numerator). This

specific terminology regarding poles and zeros is not in scope for this class; it will come up in future circuits
and controls classes and is borrowed from complex analysis.

Here, we define the constants ωz as "zeros" and ωp as "poles."" The zeros are the roots ofN(jω) while poles
are the roots of D(jω). 4

Using our rules for composing Bode plots, we know how to decompose our so-called general rational trans-
fer function in terms of its magnitude and phase:

∣∣H(jω)
∣∣ = |K| · |jω|Nz0 ·

∣∣∣1 + j ω
ωz1

∣∣∣ · · ·∣∣∣1 + j ω
ωzn

∣∣∣
|jω|Np0 ·

∣∣∣1 + j ω
ωp1

∣∣∣ · · ·∣∣∣1 + j ω
ωpm

∣∣∣ (7)

= |K| ·|ω|Nz0−Np0 ·

√
1 + ω2

ω2
z1
· · ·
√
1 + ω2

ω2
zn√

1 + ω2

ω2
p1
· · ·
√
1 + ω2

ω2
pm

(8)

]H(jω) = ](K) + ](jω)Nz0 +
n∑

i=1

]

(
1 + j

ω

ωzi

)
− ](jω)Np0 −

m∑
i=1

]

(
1 + j

ω

ωpi

)
(9)

= ](K) + (Nz0 −Np0)](j) +
n∑

i=1

atan2

(
ω

ωzi
, 1

)
−

m∑
i=1

atan2

(
ω

ωpi
, 1

)
. (10)

Now, we have simplified as much as we can, generally. We could now convert j into either ej
π
2 or 45◦,

depending on whether we’re using radians or degrees for phase.

3.1 Poles, Zeros, and Constants [Optional]
3.1.1 Simple Pole, Simple Zero

The notion of a pole and zero frequency is a generalization of the term cutoff frequency.5Let’s first look
back at a plot of our RC low-pass filter, which has the following form (except we’ve substituted the more
general ωp for ωc):

HP (jω) =
1

1 + jω/ωp
(11)

In what follows, pay special attention to the Linear Approximations! When drawing Bode plots, we claim
that the plot drops off with a slope of 1 after a pole ωp. Suppose our transfer function has a simple pole
at ωp = 106. Then magnitude plot has a familiar shape as in fig. 7 (resembling a low-pass filter’s transfer
function!).

4Technically if s = jω, then the roots of N(s) and D(s) are −ωz and −ωp. However, when plotting Bode plots, we refer to ωz
and ωp as the zero and pole frequencies.

5How is it more general? As an example, in all our previous plots and transfer functions, our magnitude has always dropped
before or after the cutoff frequency relative to the passband; for a zero, it will rise.
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Figure 7: Simple Pole, Magnitude Plot.

We can look at the phase plot in fig. 8 as well:
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Figure 8: Simple Pole, Phase Plot.

Now let’s take a look at a simple zero.

HZ(jω) = 1 + jω/ωz (12)

We see that this Magnitude Bode plot in fig. 9 rises with a slope of 1 after the zero at ωz. Suppose ωz = 106

also.
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Figure 9: Simple Zero, Magnitude Plot.

The phase plot is in fig. 10.
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Figure 10: Simple Zero, Phase Plot.

3.1.2 Pole/Zero at the Origin

To plot a pole at the origin (as in fig. 11), recall that H(jω) = 1
jω has magnitude ω and phase −90◦.6 If our

transfer function has a pole at the origin, it will start off with a slope of−1. The phase of a pole at the origin
is −90◦ at all frequencies.
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Figure 11: Origin Pole, Magnitude Plot.

We plot a zero at the origin in fig. 12, recall that H(jω) = jω has magnitude ω and phase 90◦. If our transfer
function has a zero at the origin, it will start off with a slope of 1. The phase of a zero at the origin is 90◦ at
all frequencies.

6For this subsection and the next, our linear approximations are actually exactly correct.
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Figure 12: Origin Zero, Magnitude Plot.

3.1.3 Constant Terms

Lastly, we show the plot of a constant K = 100 in fig. 13. As expected, the plot remains constant. This
implies that multiplication by K will shift up the entire bode plot up by K. Note that positive constants have
a constant phase of 0◦ at all frequencies, while negative constants have a constant phase of 180◦ ≡ −180◦
at all frequencies.
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Figure 13: Constant Gain Term, Magnitude Plot.
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3.2 Bode Plot: Complicated Examples [Optional]
We have previously seen examples of how to compute the transfer function plot of a bandpass filter and for
an nth order low-pass filter. At this point, see if you can go back and compose them yourself with the linear
approximations presented above. See if you get the same results!

Transfer Function Example

Now let’s take a look at the Bode plot of a new transfer function in eq. (13).

HT (jω) = 100
(1 + jω)

(jω)2 + 1010(jω) + 104
(13)

Our first step is to factor this into its rational transfer function form:

HT (jω) = 0.01
(1 + jω)

(1 + jω/10)(1 + jω/103)
(14)

With HT (jω) in its rational form, we see that K = 0.01, ωz = 1, ωp1 = 10, ωp2 = 103. In fig. 14 is a
magnitude plot of each consituent component (following the building-block rules presented above), and the
multiplication of all of these provides

∣∣HT (jω)
∣∣. The linear approximations are omitted to keep the plot

legible, but the approximate result will very closely match the exact one.
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Figure 14: Magnitude Bode Plot of HT (jω)

To provide an analysis for this Bode plot, we see that the plot starts off at K = 0.01. Then at ωz = 1, it
starts rising with slope 1. When it hits the pole at ωp1 = 10, the slope of 1 is cancelled out by the −1 slope
that the pole provides. Then the Bode plot stays constant until ωp2 = 103 at which it drops off with a slope
of 1. We’ve provided Bode plots of the individual terms to give you a sense of how we “add” Bode plots
together.

We can also plot the phase in fig. 15, in a very similar way using our building blocks:

Note 8: Bode Plots, © UCB EECS 16B, Fall 2021. All Rights Reserved. This may not be publicly shared without explicit permission. 11



Note 8: Bode Plots @ 2021-10-04 10:19:07-07:00

10−1 100 101 102 103 104 105 106 107 108 109

−90

−45

0

45

90

ω

]
H

T
(j
ω
)

]HT (jω)
K = 0.01
ωz = 1
ωp1 = 10

ωp2 = 103

Figure 15: Phase Bode Plot of HT (jω)

Zero at the Origin

In our final example, we examine the effects of a zero at the origin. Only the final results are shown; the
intermediate building blocks are left fo the reader to consider. We are given the transfer function eq. (15) in
rational form.

HO(ω) = 0.1
(jω)(1 + jω/106)

(1 + jω/102)2
(15)

Our magnitude plot is in fig. 16.
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Figure 16: Magnitude Bode Plot of H)(jω)

Since there is a zero at the origin, the plot will initially start with a slope of 1. There are no additional zeros
or poles before ω = 1, so we can approximate

∣∣HO(1)
∣∣ = K = 0.1. Then the double pole at ωp = 102

provides a slope of −2 that will cancel out the slope of 1 making the overall slope after ωp equal to −1.
Lastly, there is a zero at ωz = 106 and we see that the addition of a slope of 1 makes

∣∣HO(ω)
∣∣ remains

constant after ωz.
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And for the phase, we have the plot in fig. 17.
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Figure 17: Phase Bode Plot of HO(jω)
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