1. KVL/KCL Review

Use Kirchhoff's Laws on the circuit below to find V_{x} in terms of $V_{\mathrm{in}}, R_{1}, R_{2}, R_{3}$.

Figure 1: Example Circuit
(a) Recall Node Voltage Analysis (NVA). Determine V_{x} by labeling the circuit and writing equations to solve a system of equations in node voltages.

Solution:

Figure 2
Applying KCL to the node at V_{x}, we get

$$
\begin{equation*}
\frac{V_{\text {in }}-V_{x}}{R_{1}}-\frac{V_{x}-0}{R_{2}}-\frac{V_{x}-0}{R_{3}}=0 \tag{1}
\end{equation*}
$$

Solving this equation for V_{x} yields

$$
\begin{equation*}
V_{x}=V_{\text {in }} \frac{R_{2} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}} \tag{2}
\end{equation*}
$$

(b) In EECS16A, you learned you can simplify analysis by replacing series or parallel resistors with equivalents and memorizing common circuit design blocks. Determine V_{x} by leveraging resistor equivalence and recognition of a design block.

Solution: Observe that R_{2} and R_{3} are in parallel. We can replace them with a single resistor of value $R_{\mathrm{eq}}=R_{2} \| R_{3}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}$ in between the ground and the node with node voltage V_{x}.

Figure 3

This circuit is a voltage divider. We can determine $V_{\text {eq }}$ as a function of the resistances and the source, then relate V_{x} to $V_{\text {eq }}$.

$$
\begin{align*}
V_{\mathrm{eq}} & =\frac{R_{\mathrm{eq}}}{R_{1}+R_{\mathrm{eq}}} V_{\mathrm{in}} \tag{3}\\
V_{\mathrm{eq}} & =V_{x}-0 \tag{4}\\
V_{x} & =\frac{\frac{R_{2} R_{3}}{R_{2}+R_{3}}}{R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}} V_{\mathrm{in}} \tag{5}\\
V_{x} & =\frac{R_{2} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}} V_{\mathrm{in}} \tag{6}
\end{align*}
$$

(c) As a check, as $R_{3} \rightarrow \infty$, what is V_{x} for what you found in (a) and (b)? The V_{x} 's of each part should approach the same value. What is the name we used for this type of circuit?
Solution: The expressions we show above for (a) and (b) are identical. However, if they do not appear identical without simplification, the limit can be a way to verify that both solution methods inform us of the correct circuit behavior and are consistent with each other. As $R_{3} \rightarrow \infty$, the $R_{1} R_{2}$ term on the denominator will become insignificant, simplifying our expression.

$$
\begin{aligned}
\lim _{R_{3} \rightarrow \infty} V_{x} & =\lim _{R_{3} \rightarrow \infty} V_{\text {in }} \frac{R_{2} R_{3}}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}} \\
& =\lim _{R_{3} \rightarrow \infty} V_{\text {in }} \frac{R_{2}}{\frac{R_{1} R_{2}}{R_{3}}+R_{1}+R_{2}} \\
& =V_{\text {in }} \frac{R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

When $R_{3} \rightarrow \infty$, it effectively becomes an open circuit, which makes the rest of the circuit a resistive voltage divider.

2. Current Sources And Capacitors

(Adapted from EECS16A Fall 20 Disc 9A.)
(HINT: Recall charge has units of Coulombs. (C), and capacitance is measured in Farads. (F). Also, 1F $=\frac{1 \mathrm{C}}{1 \mathrm{~V}}$. It may also help to note metric prefix examples: $3 \mu \mathrm{~F}=3 \times 10^{-6} \mathrm{~F}$.)

Given the circuit in fig. 4, find an expression for $v_{\text {out }}(t)$ in terms of I_{S}, C, V_{0}, and t, where V_{0} is the initial capacitor voltage at $t=0$.

Figure 4: A current source attached to a capacitor.

Then plot the function $v_{\text {out }}(t)$ over time on the graph below for each set of conditions, detailed below.

Use the values $I_{S}=1 \mathrm{~mA}$ and $C=2 \mu \mathrm{~F}$.
(1) Capacitor is initially uncharged $V_{0}=0$ at $t=0$.
(2) Capacitor has been charged with $V_{0}=1.5 \mathrm{~V}$ at $t=0$.
(3) (PRACTICE) Swap this capacitor for one with half the capacitance $C=1 \mu \mathrm{~F}$, which is initially uncharged $V_{0}=0$ at $t=0$.
(HINT: Recall the calculus identity $\int_{a}^{b} f^{\prime}(x) \mathrm{d} x=f(b)-f(a)$, where $f^{\prime}(x)=\frac{\mathrm{d} f}{\mathrm{~d} t}$.)

Solution: The key here is to exploit the capacitor equation by taking its time-derivative.

$$
\begin{equation*}
Q=C v_{\mathrm{out}} \longrightarrow \frac{\mathrm{~d} Q}{\mathrm{~d} t} \equiv I_{C}=I_{s}=C \frac{\mathrm{~d} v_{\mathrm{out}}}{\mathrm{~d} t} \tag{7}
\end{equation*}
$$

From here we can rearrange and show that:

$$
\begin{equation*}
\frac{\mathrm{d} v_{\mathrm{out}}}{\mathrm{~d} t}=\frac{I_{S}}{\mathrm{C}} \tag{8}
\end{equation*}
$$

Thus the voltage has a constant slope!
Our solution is

$$
\begin{equation*}
v_{\mathrm{out}}(t)=V_{0}+\left(\frac{I_{s}}{C}\right) t \tag{9}
\end{equation*}
$$

Formally, we are solving a differential equation that happens to return a linear function for $v_{\text {out }}(t)$:

$$
\begin{align*}
\frac{\mathrm{d} v_{\text {out }}}{\mathrm{d} t} & =\frac{I_{s}}{C} \tag{10}\\
\int_{0}^{t} \frac{\mathrm{~d} v_{\text {out }}}{\mathrm{d} t} \mathrm{~d} t & =v_{\text {out }}(t)-v_{\text {out }}(0) \tag{11}\\
\int_{0}^{t} \frac{I_{s}}{C} \mathrm{~d} t & =\frac{I_{s}}{C} \int_{0}^{t} 1 \mathrm{~d} t \equiv \frac{I_{s}}{C} t \tag{12}
\end{align*}
$$

Thus we arrive at the same statement as seen earlier: $v_{\text {out }}(t)=v_{\text {out }}(0)+\left(\frac{I_{s}}{C}\right) t$.
From this stage we can compute the slope of $v_{\text {out }}(t)$ in each scenario.

$$
\begin{equation*}
\frac{I_{s}}{\mathrm{C}}=\frac{1 \mathrm{~mA}}{2 \mu \mathrm{~F}}=\frac{1000 \frac{\mathrm{\mu C}}{\mathrm{~s}}}{2 \frac{\mathrm{\mu C}}{\mathrm{~V}}}=500 \frac{\mathrm{~V}}{\mathrm{~s}}=0.5 \frac{\mathrm{~V}}{\mathrm{~ms}} \tag{13}
\end{equation*}
$$

For part (c):

$$
\begin{equation*}
\frac{I_{s}}{\mathrm{C}}=\frac{1 \mathrm{~mA}}{1 \mu \mathrm{~F}}=\frac{1000 \frac{\mu \mathrm{C}}{\mathrm{~s}}}{1 \frac{\mu \mathrm{C}}{\mathrm{~V}}}=1000 \frac{\mathrm{~V}}{\mathrm{~s}}=1 \frac{\mathrm{~V}}{\mathrm{~ms}} \tag{14}
\end{equation*}
$$

When plotting, make sure to recall (a) and (c) start at the origin, while (b) has initially charged plates by $V_{0}=1.5 \mathrm{~V}$. Results are shown below:

time (ms)

3. Op-Amp Summer

Consider the following circuit (assume the op-amp is ideal):

Figure 5: Op-amp Summer

What is the output V_{o} in terms of V_{1} and V_{2} ? You may assume that R_{1}, R_{2}, and R_{f} are known.

Solution:

Figure 6

Let I_{-}be the current flowing into the (-) terminal of the op-amp

$$
\begin{array}{r}
I_{R_{f}}+I_{-}=I_{R_{1}}+I_{R_{2}} \\
I_{R_{f}}+0=I_{R_{1}}+I_{R_{2}} \\
\frac{0 V-V_{o}}{R_{f}}+0 A=\frac{V_{1}-0}{R_{1}}+\frac{V_{2}-0}{R_{2}} \\
V_{o}=-\left(\frac{R_{f}}{R_{1}} \cdot V_{1}+\frac{R_{f}}{R_{2}} \cdot V_{2}\right) \tag{18}
\end{array}
$$

