1. Determining Current for a Capacitance Given Voltage (Hambley Example 3.1)

Supposed that the voltage $v(t)$ shown in Figure 1 b is applied to a $1 \mu \mathrm{~F}$ capacitance.

(a) Example Circuit

(b) Plot of $v(t)$

Figure 1

Plot the stored charge $(q(t))$ and the current $(i(t))$ through the capacitor versus time.

2. Determining Voltage for a Capacitance Given Current (Hambley Example 3.2)

After t_{0} the current in a $0.1 \mu \mathrm{~F}$ capacitor is given by

$$
\begin{equation*}
i(t)=0.5 \sin 10^{4} t \tag{1}
\end{equation*}
$$

(The argument of the sin function is in radians.) The initial charge on the capacitor is $q(0)=0$.

Figure 2: Example Circuit

Plot $i(t), q(t)$, and $v(t)$ to scale versus time.

3. Current, Power, and Energy for a Capacitance (Hambley Example 3.3)

Suppose that the voltage waveform shown in Figure 3 is applied to a $10-\mu \mathrm{F}$ capacitance.

Figure 3: Plot of $v(t)$

Find and plot the current, the power delivered, and the energy stored for time between 0 and 5 s .

