1. Determining Current for an Inductor (Hambley Exercise 3.7)

The voltage across a $150-\mu \mathrm{H}$ inductance is shown in Figure 1. The initial current is $i(0)=0$.

(a) Example Circuit

(b) Plot of $v(t)$

Figure 1

Find and plot the current $i(t)$ to scale versus time. Assume that the references for $v(t)$ and $i(t)$ have the passive configuration (current enters through the (+) terminal of the passive component).
Solution: Here we want to use the equation

$$
\begin{equation*}
i(t)=\frac{1}{L} \int_{t_{0}}^{t} v\left(t^{\prime}\right) \mathrm{d} t^{\prime}+i\left(t_{0}\right) \tag{1}
\end{equation*}
$$

For the interval where t is between 0 and $2 \mu \mathrm{~s}$,

$$
\begin{align*}
i(t) & =\frac{1}{150} \int_{0}^{t} 7.5 t^{\prime} \mathrm{d} t^{\prime}+i(0) \tag{2}\\
& =\left.\frac{1}{150}\left[3.75 t^{2}\right]\right|_{0} ^{t} \tag{3}\\
& =\frac{3.75}{150} t^{2} \tag{4}\\
& =0.025 t^{2} \mathrm{~A} \tag{5}
\end{align*}
$$

Note: Let's verify what our units are for the equation.

$$
\begin{equation*}
i(t)=\frac{1}{L} \int_{t_{0}}^{t} v\left(t^{\prime}\right) \mathrm{d} t^{\prime}+i\left(t_{0}\right) \tag{6}
\end{equation*}
$$

Since we are integrating voltage over time (which is given to us in $\mu \mathrm{s}$), the units for $\int_{t_{0}}^{t} v\left(t^{\prime}\right) \mathrm{d} t^{\prime}$ will be $\mathrm{V} \mu \mathrm{s}$. The coefficient of $\frac{1}{L}$ will have the units $\frac{1}{\mu \mathrm{H}}$. Combining these units, we have $\frac{V \mu \mathrm{~s}}{\mu \mathrm{H}}=\frac{\mathrm{Vs}}{\mathrm{H}}=\mathrm{A}$.

Therefore, our derived equation for current is in amperes. The same will apply for the following intervals.

For the interval between 2 and $4 \mu \mathrm{~s}$, the voltage is 0 meaning that the current remains constant during this time. Since the current of an inductor cannot change instantaneously, the current will remain constant at the value at $t=2 \mu \mathrm{~s}$, which is 0.1 A .
For the last interval between 4 and 5 , we will apply the same equation. This time we want to integrate starting from $t_{0}=4 \mu$.

$$
\begin{align*}
i(t) & =\frac{1}{150} \int_{4}^{t}-15 \mathrm{~d} t^{\prime}+i(4) \tag{7}\\
& =\left.\frac{1}{150}[-15 t]\right|_{4} ^{t}+0.1 \tag{8}\\
& =-\frac{15}{150}(t-4)+0.1 \tag{9}\\
& =-0.1(t-5) \mathrm{A} \tag{10}
\end{align*}
$$

Figure 2: Plot of $i(t)$

2. Calculating Equivalent Inductance (Hambley Exercise 3.10)

Find the equivalent inductance for the circuit shown in Figure 3.

Figure 3: Inductor Circuit

Solution: Recall, that the inductor equivalence equations for series and parallel are analagous to that of resistors.

First, start by noticing that that the 2 H and 3 H inductors are in series and we can treat those inductors as a single inductor with $2+3=5 \mathrm{H}$ inductance:

Figure 4

Then, notice that the new 5 H inductor is in parallel with the 4 H and other 5 H inductors. Applying the equation for inductors in parallel,

$$
\begin{align*}
\frac{1}{L_{\mathrm{eq}}} & =\frac{1}{5}+\frac{1}{4}+\frac{1}{5} \tag{11}\\
& =\frac{13}{20} \tag{12}\\
L_{\mathrm{eq}} & =\frac{20}{13} \tag{13}
\end{align*}
$$

Figure 5

Finally, these three inductors are in series, so we can add their inductances together:

$$
\begin{align*}
L_{\mathrm{eq}} & =1+\frac{20}{13}+6 \tag{14}\\
& =\frac{111}{13} \mathrm{H} \tag{15}\\
& \approx 8.54 \mathrm{H} \tag{16}
\end{align*}
$$

3. Voltage, Power, and Energy for an Inductance (Hambley Example 3.6)

The current through a 5 H inductance is shown in Figure 6.

Figure 6: Plot of $i(t)$

Plot the voltage, power and stored energy to scale versus time for t between 0 and 5 s
Solution: We will first compute the voltage using the equation

$$
\begin{equation*}
v(t)=L \frac{\mathrm{~d} i(t)}{\mathrm{d} t} \tag{17}
\end{equation*}
$$

The time derivative of the current is the slope of the current versus time, which we can read from the provided graph. Between 0 and 2 s , we have $\frac{\mathrm{d} i(t)}{\mathrm{d} t}=1.5 \frac{\mathrm{~A}}{\mathrm{~s}}$ and thus $v=7.5 \mathrm{~V}$. Between 2 and 4 s , $\frac{\mathrm{d} i(t)}{\mathrm{d} t}=0 \frac{\mathrm{~A}}{\mathrm{~s}}$ and therefore $v=0 \mathrm{~V}$. In the last interval between 4 and $5 \mathrm{~s}, \frac{\mathrm{~d} i(t)}{\mathrm{d} t}=-3 \frac{\mathrm{~A}}{\mathrm{~s}}$ and $v=-15 \mathrm{~V}$.

This results in the following graph

Figure 7: Plot of $v(t)$

We can then solve for the power using the equation:

$$
\begin{equation*}
p(t)=v(t) i(t) \tag{18}
\end{equation*}
$$

which would give us the following graph

Figure 8: Plot of $p(t)$

Lastly, we need to solve for the stored energy as a function of time which uses the equation

$$
\begin{equation*}
w(t)=\frac{1}{2} L i^{2}(t) \tag{19}
\end{equation*}
$$

This creates the following plot

Figure 9

4. Steady-State Analysis (Hambley Example 4.1)

Find v_{x} and i_{x} for the circuit shown in Figure 10 for $t \gg 0$.

Figure 10

Solution: After the switch has been closed for a long time, we expect the transient response to have decayed to 0 . This means that the circuit is operating in dc steady-state conditions.

An inductor in steady-state is equivalent to a wire or a short circuit. This is because current is now constant, meaning its time derivative is 0 . Therefore, by

$$
\begin{equation*}
v(t)=L \frac{\mathrm{~d} i(t)}{\mathrm{d} t}=L \times 0=0 \mathrm{~V} \tag{20}
\end{equation*}
$$

The voltage across the inductor is now 0, meaning that we can treat it as a short circuit.
A capacitor in steady-state is equivalent to an open circuit. This is because the voltage is constant and its time derivative is 0 . Therefore, by the capacitor element equation:

$$
\begin{equation*}
i(t)=C \frac{\mathrm{~d} v(t)}{\mathrm{d} t}=C \times 0=0 \mathrm{~A} \tag{21}
\end{equation*}
$$

The current through the capacitor is 0 , meaning that is essentially an open circuit.
We can now simplify our circuit to look like the following:

Figure 11: Equivalent Circuit

Recognizing that the resistors are in series, the overall current will be:

$$
\begin{equation*}
i_{x}=\frac{10}{R_{1}+R_{2}}=1 \mathrm{~A} \tag{22}
\end{equation*}
$$

The voltage v_{x} would then be:

$$
\begin{equation*}
v_{x}=R_{2} i_{x}=5 \mathrm{~V} \tag{23}
\end{equation*}
$$

You can also solve for v_{x} by recognizing that the equivalent circuit is a voltage divider, which would yield:

$$
\begin{equation*}
v_{x}=\frac{R_{2}}{R_{1}+R_{2}} 10=5 \mathrm{~V} \tag{24}
\end{equation*}
$$

