The following sections from the textbook are useful for this discussion: Sections 4.1, 4.3, 4.4

1. RL Transient Analysis (Hambley Example 4.2)

Consider the circuit shown in Figure 1.

Figure 1
(a) Set up a differential equation for the current $i(t)$ in the form:

$$
\begin{equation*}
\frac{\mathrm{d} i(t)}{\mathrm{d} t}+a i(t)=b(t) \tag{1}
\end{equation*}
$$

and determine the initial condition $i(0)$.
(b) Solve for the current $i(t)$ using the integrating factor method.
(c) Find the voltage $v(t)$.
2. Analyzing an RC Circuit with a Sinusoidal Source (Hambley Example 4.4)

Assume you are given the following circuit, where the capacitor is initially charged so that $v_{C}(t)=$ 1 V .

Figure 2
(a) Set up a differential equation for the current $i(t)$ through the circuit in the form:

$$
\begin{equation*}
\frac{\mathrm{d} i(t)}{\mathrm{d} t}+a i(t)=b(t) \tag{2}
\end{equation*}
$$

(b) Determine the initial condition of $i(t)$. In order words, solve for $i(0)$.
(c) Solve for the current $i(t)$ through the circuit. Also, identify the transient response and the forced response of $i(t)$. You may directly use the fact that the solution to a differential equation in the same form as Equation 2 is:

$$
\begin{equation*}
i(t)=A \mathrm{e}^{-a t}+\mathrm{e}^{-a t} \int \mathrm{e}^{a t^{\prime}} b\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{3}
\end{equation*}
$$

(HINT: The following integral might be useful:

$$
\begin{equation*}
\int e^{a t} \cos (b t)=\frac{1}{b^{2}+a^{2}} \mathrm{e}^{a t}(b \sin (b t)+a \cos (b t)) \tag{4}
\end{equation*}
$$

)
(d) (OPTIONAL) Solve for the voltage $v_{C}(t)$ across the capacitor.

