The following sections from the textbook are useful for this discussion: Sections 4.1, 4.3, 4.4

1. RL Transient Analysis (Hambley Example 4.2)

Consider the circuit shown in Figure 1.

Figure 1
(a) Set up a differential equation for the current $i(t)$ in the form:

$$
\begin{equation*}
\frac{\mathrm{d} i(t)}{\mathrm{d} t}+a i(t)=b(t) \tag{1}
\end{equation*}
$$

and determine the initial condition $i(0)$.
Solution: Before the switch closes $(t<0)$, we have that the switch is open and thus current is zero.

$$
\begin{equation*}
i(t)=0 \quad \text { for } t<0 \tag{2}
\end{equation*}
$$

Furthermore, since inductor current cannot change instantaneous/must be continuous, we know that immediately after the switch is closed, $i(0)=0$. We will use this initial condition when solving our differential equation later on.
To begin solving for current $i(t)$, we will write out the KVL equation for the loop, which states that the sum of the voltages around a loop is 0 :

$$
\begin{align*}
V_{s}-V_{R}-V_{L} & =0 \tag{3}\\
V_{R}+V_{L} & =V_{s} \tag{4}\\
R i(t)+L \frac{\mathrm{~d} i(t)}{\mathrm{d} t} & =V_{s} \tag{5}
\end{align*}
$$

Rearranging our differential equation to be in the desired form, we get:

$$
\begin{align*}
R i(t)+L \frac{\mathrm{~d} i(t)}{\mathrm{d} t} & =V_{s} \tag{6}\\
L \frac{\mathrm{~d} i(t)}{\mathrm{d} t}+R i(t) & =V_{s} \tag{7}\\
\frac{\mathrm{~d} i(t)}{\mathrm{d} t}+\frac{R}{L} i(t) & =\frac{V_{s}}{L} \tag{8}
\end{align*}
$$

where $a=\frac{R}{L}$ and $b(t)=\frac{V_{S}}{L}$.
(b) Solve for the current $i(t)$ using the integrating factor method.

Solution: Approach 1: Integrating Factor Method

Starting from the equation we derived above:

$$
\begin{equation*}
\frac{\mathrm{d} i(t)}{\mathrm{d} t}+\frac{R}{L} i(t)=\frac{V_{s}}{L} \tag{9}
\end{equation*}
$$

where $a=\frac{R}{L}$ and $b(t)=\frac{V_{s}}{L}$. From here, we know that the integrating factor $f(t)$ is

$$
\begin{align*}
f(t) & =\mathrm{e}^{\int a \mathrm{~d} t} \tag{10}\\
& =\mathrm{e}^{\int \frac{R}{L} \mathrm{~d} t} \tag{11}\\
& =\mathrm{e}^{\frac{R}{L} t} \tag{12}
\end{align*}
$$

Multiplying both sides of our differential equation by this factor, we get:

$$
\begin{align*}
\mathrm{e}^{\frac{R}{L} t} \frac{\mathrm{~d} i(t)}{\mathrm{d} t}+\mathrm{e}^{\frac{R}{L} t} \frac{R}{L} i(t) & =\mathrm{e}^{\frac{R}{L} t} \frac{V_{S}}{L} \tag{13}\\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(i(t) \mathrm{e}^{\frac{R}{L} t}\right) & =\frac{V_{S}}{L} \mathrm{e}^{\frac{R}{L} t} \tag{14}\\
i(t) \mathrm{e}^{\frac{R}{L} t} & =\int \frac{V_{S}}{L} \mathrm{e}^{\frac{R}{L} t^{\prime}} \mathrm{d} t^{\prime} \tag{15}\\
i(t) \mathrm{e}^{\frac{R}{L} t} & =\frac{V_{S}}{L} \int \mathrm{e}^{\frac{R}{L} t^{\prime}} \mathrm{d} t^{\prime} \tag{16}\\
i(t) \mathrm{e}^{\frac{R}{L} t} & =\frac{V_{S}}{L}\left(\frac{L}{R} \mathrm{e}^{\frac{R}{L} t}\right)+c \tag{17}\\
i(t) \mathrm{e}^{\frac{R}{L} t} & =\frac{V_{S}}{R}\left(\mathrm{e}^{\frac{R}{L} t}\right)+c \tag{18}\\
i(t) & =\frac{V_{S}}{R}+c \mathrm{e}^{-\frac{R}{L} t} \tag{19}
\end{align*}
$$

Now, we will use our initial conditions to solve for the constant c.

$$
\begin{align*}
i(0) & =\frac{V_{s}}{R}+c \mathrm{e}^{-\frac{R}{L} 0} \tag{20}\\
0 & =\frac{V_{s}}{R}+c \tag{21}\\
c & =-\frac{V_{s}}{R} \tag{22}
\end{align*}
$$

Putting this all together, we get that our final equation for current is:

$$
\begin{align*}
& i(t)=\frac{V_{s}}{R}-\frac{V_{s}}{R} \mathrm{e}^{-\frac{R}{L} t} \tag{23}\\
& i(t)=2-2 e^{-500 t} \tag{24}
\end{align*}
$$

Approach 2: Pattern-Matching

Recall that the general form of the solution of a differential euqation in the form:

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}+a y(t)=b(t) \tag{25}
\end{equation*}
$$

is

$$
\begin{equation*}
y(t)=A \mathrm{e}^{-a t}+\mathrm{e}^{-a t} \int \mathrm{e}^{a t} b(t) \mathrm{d} t \tag{26}
\end{equation*}
$$

Plugging this into the general form and solving gives us:

$$
\begin{align*}
& i(t)=A e^{-\frac{R}{L} t}+e^{-\frac{R}{L} t} \int e^{\frac{R}{L} t} \frac{V_{s}}{L} \mathrm{~d} t \tag{27}\\
& i(t)=A e^{-\frac{R}{L} t}+\frac{V_{s}}{L} e^{-\frac{R}{L} t} \int e^{\frac{R}{L} t} \mathrm{~d} t \tag{28}\\
& i(t)=A e^{-\frac{R}{L} t}+\frac{V_{s}}{L} e^{-\frac{R}{L} t}\left(\frac{L}{R} e^{-\frac{R}{L}}\right) t \tag{29}\\
& i(t)=A e^{-\frac{R}{L} t}+\frac{V_{s}}{R} \tag{30}
\end{align*}
$$

Lastly, we will use the initial condition $i(t)=0$ to solve for A :

$$
\begin{align*}
i(0) & =A e^{-\frac{R}{L} 0}+\frac{V_{s}}{R} \tag{31}\\
0 & =A+\frac{V_{s}}{R} \tag{32}\\
A & =-\frac{V_{s}}{R} \tag{33}
\end{align*}
$$

Therefore, our final equation is also:

$$
\begin{align*}
& i(t)=\frac{V_{s}}{R}-\frac{V_{s}}{R} \mathrm{e}^{-\frac{R}{L} t} \tag{34}\\
& i(t)=2-2 e^{-500 t} \tag{35}
\end{align*}
$$

Approach 3: Textbook, "Ad hoc" Method

This form of a differential leads us to want to try a solution in the form of:

$$
\begin{equation*}
i(t)=K_{1}+K_{2} \mathrm{e}^{s t} \tag{36}
\end{equation*}
$$

where we need to determine the values of the constants K_{1}, K_{2}, and s. We will first proceed by plugging in our trial solution into the differential equation which results in:

$$
\begin{align*}
R\left(K_{1}+K_{2} \mathrm{e}^{s t}\right)+L \frac{\mathrm{~d}}{\mathrm{~d} t}\left(K_{1}+K_{2} \mathrm{e}^{s t}\right) & =V_{s} \tag{37}\\
R K_{1}+R K_{2} \mathrm{e}^{s t}+L\left(s K_{2} \mathrm{e}^{s t}\right) & =V_{s} \tag{38}\\
R K_{1}+\left(R K_{2}+s L K_{2}\right) \mathrm{e}^{s t} & =V_{s} \tag{39}
\end{align*}
$$

By pattern matching the two sides of the equation: we have that:

$$
\begin{align*}
K_{1} & =\frac{V_{s}}{R}=\frac{100}{50}=2 \tag{40}\\
s & =-\frac{R}{L} \tag{41}
\end{align*}
$$

If we plug this into our trial solution for current, we have:

$$
\begin{equation*}
i(t)=2+K_{2} \mathrm{e}^{-\frac{R}{L} t} \tag{42}
\end{equation*}
$$

Lastly, we can solve for the value of K_{2} using the initial conditions. Using the initial condition that $i(0)=0$ in, we get:

$$
\begin{align*}
i(0) & =2+K_{2} \mathrm{e}^{-\frac{R}{L} 0} \tag{43}\\
0 & =2+K_{2} \tag{44}\\
K_{2} & =-2 \tag{45}
\end{align*}
$$

Hence, putting this all together, we have that the final solution for current is:

$$
\begin{equation*}
i(t)=2-2 \mathrm{e}^{-\frac{R}{L} t} \quad \text { for } t>0 \tag{46}
\end{equation*}
$$

or if we replace $\tau=\frac{L}{R}$ where τ is the time constant, we get:

$$
\begin{equation*}
i(t)=2-2 \mathrm{e}^{-\frac{t}{\tau}} \quad \text { for } t>0 \tag{47}
\end{equation*}
$$

(c) Find the voltage $v(t)$.

Solution: There are two approaches we can use to solve for $v(t)$. The first one is using the I-V relationsip of an inductor and the second is using the fact that $v(t)$ is also the difference between the source voltage and the resistor voltage.
Approach 1: We can use the equation:

$$
\begin{equation*}
v_{L}(t)=L \frac{\mathrm{~d} i_{L}(t)}{\mathrm{d} t} \tag{48}
\end{equation*}
$$

which requires us to take the derivative of our derived current equation.

$$
\begin{align*}
& v(t)=L \frac{\mathrm{~d}}{\mathrm{~d} t}\left(-\frac{V_{s}}{R} \mathrm{e}^{-\frac{R}{L} t}\right) \tag{49}\\
& v(t)=L \frac{V_{s}}{R} \frac{R}{L} \mathrm{e}^{-\frac{R}{L} t} \tag{50}\\
& v(t)=L \frac{V_{s}}{R} \frac{R}{L} \mathrm{e}^{-\frac{R}{L} t} \tag{51}\\
& v(t)=V_{s} \mathrm{e}^{-\frac{R}{L} t} \tag{52}\\
& v(t)=100 \mathrm{e}^{-500 t} \tag{53}
\end{align*}
$$

Approach 2: The second approach involves recognizing that by KVL:

$$
\begin{equation*}
v(t)=V_{s}-V_{R}(t) \tag{54}
\end{equation*}
$$

Leveraging Ohm's Law which states $V_{R}(t)=R i(t)$, we can solve for $v(t)$:

$$
\begin{align*}
& v(t)=V_{s}-R\left(\frac{V_{s}}{R}-\frac{V_{s}}{R} \mathrm{e}^{-\frac{R}{L} t}\right) \tag{55}\\
& v(t)=V_{s}-V_{s}+V_{s} \mathrm{e}^{-\frac{R}{L} t} \tag{56}\\
& v(t)=V_{s} \mathrm{e}^{-\frac{R}{L} t} \tag{57}\\
& v(t)=100 \mathrm{e}^{-500 t} \tag{58}
\end{align*}
$$

which is the same solution as we got from Approach 1.

2. Analyzing an RC Circuit with a Sinusoidal Source (Hambley Example 4.4)

Assume you are given the following circuit, where the capacitor is initially charged so that $v_{C}(t)=$ 1 V .

Figure 2
(a) Set up a differential equation for the current $i(t)$ through the circuit in the form:

$$
\begin{equation*}
\frac{\mathrm{d} i(t)}{\mathrm{d} t}+a i(t)=b(t) \tag{59}
\end{equation*}
$$

Solution: Let's start by writing the voltage equation for $t>0$ using KVL:

$$
\begin{align*}
v_{R}(t)+v_{C}(t)-v_{\text {in }}(t) & =0 \tag{60}\\
R i(t)+\frac{1}{C} \int_{0}^{t} i\left(t^{\prime}\right) \mathrm{d} t^{\prime}+v_{C}(0)-2 \sin (200 t) & =0 \tag{61}
\end{align*}
$$

We wish to convert this to a differential equation, so let's take the derivative of the whole equation and then rearrange so that it is in the general form for a first-order differential equation:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(R i(t)+\frac{1}{C} \int_{0}^{t} i\left(t^{\prime}\right) \mathrm{d} t^{\prime}+v_{C}(0)-2 \sin (200 t)\right) & =0 \tag{62}\\
R \frac{\mathrm{~d} i(t)}{\mathrm{d} t}+\frac{1}{\mathrm{C}} i(t)+0-400 \cos (200 t) & =0 \tag{63}\\
\frac{\mathrm{~d} i(t)}{\mathrm{d} t}+\frac{1}{R C} i(t) & =\frac{400}{R} \cos (200 t) \tag{64}
\end{align*}
$$

where $a=\frac{1}{R C}=\frac{1}{5 \times 10^{-3}}=200$ and $b(t)=\frac{400}{R} \cos (200 t)=80 \times 10^{-3} \cos (200 t)$.
(b) Determine the initial condition of $i(t)$. In order words, solve for $i(0)$.

Solution: Initially we have that $v_{C}(0)=1 \mathrm{~V}$. We know that at $t=0, V_{\text {in }}(0)=2 \sin (200 \times 0)=$ 0 V . We can solve for the current using Ohm's Law:

$$
\begin{align*}
i(0) & =\frac{V_{R}(0)}{R} \tag{65}\\
i(0) & =\frac{v_{\text {in }}(0)-v_{C}(t)}{R} \tag{66}\\
i(0) & =\frac{0-1}{5 \times 10^{3}} \tag{67}\\
i(0) & =-2 \times 10^{-4} \mathrm{~A} \tag{68}
\end{align*}
$$

(c) Solve for the current $i(t)$ through the circuit. Also, identify the transient response and the forced response of $i(t)$. You may directly use the fact that the solution to a differential equation in the same form as Equation 59 is:

$$
\begin{equation*}
i(t)=A \mathrm{e}^{-a t}+\mathrm{e}^{-a t} \int \mathrm{e}^{a t^{\prime}} b\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{69}
\end{equation*}
$$

(HINT: The following integral might be useful:

$$
\begin{equation*}
\int e^{a t} \cos (b t)=\frac{1}{b^{2}+a^{2}} \mathrm{e}^{a t}(b \sin (b t)+a \cos (b t)) \tag{70}
\end{equation*}
$$

)
Solution: Now that we have our differential equation in the standard form, we can use the general form of the solution to a first-order differential equation to solve for $i(t)$. Recall that the solution is:

$$
\begin{equation*}
y(t)=A \mathrm{e}^{-a t}+\mathrm{e}^{-a t} \int \mathrm{e}^{a t^{\prime}} b\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{71}
\end{equation*}
$$

so using out differential equation and plugging in a and $b(t)$, we get:

$$
\begin{align*}
& i(t)=A \mathrm{e}^{-\frac{1}{R C} t}+\mathrm{e}^{-\frac{1}{R C} t} \int \mathrm{e}^{\frac{1}{R C} t^{\prime}} \frac{400}{R} \cos \left(200 t^{\prime}\right) \mathrm{d} t^{\prime} \tag{72}\\
& i(t)=A \mathrm{e}^{-\frac{1}{R C} t}+\frac{400}{R} \mathrm{e}^{-\frac{1}{R C} t} \int \mathrm{e}^{\frac{1}{R C} t^{\prime}} \cos \left(200 t^{\prime}\right) \mathrm{d} t^{\prime} \tag{73}
\end{align*}
$$

From here, we can apply Equation 70 from the hint:

$$
\begin{align*}
& i(t)=A \mathrm{e}^{-\frac{1}{R C} t}+\frac{400}{R} \mathrm{e}^{-\frac{1}{R C} t} \frac{1}{\frac{1}{R C}}{ }^{2}+200^{2} \tag{74}\\
& \mathrm{e}^{\frac{1}{R C} t}\left(200 \sin (200 t)-\frac{1}{R C} \cos (200 t)\right) \tag{75}\\
& i(t)=A \mathrm{e}^{-\frac{1}{R C} t}+\frac{400}{R\left(\frac{1}{R C}^{2}+200^{2}\right)}\left(200 \sin (200 t)-\frac{1}{R C} \cos (200 t)\right)
\end{align*}
$$

Substituting values for $R=5 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$:

$$
\begin{align*}
& i(t)=A \mathrm{e}^{-\frac{1}{5 \times 10^{-3}} t}+\frac{400}{5 \times 10^{3}\left({\frac{1}{5 \times 10^{-3}}}^{2}+200^{2}\right)}\left(200 \sin (200 t)+\frac{1}{5 \times 10^{-3}} \cos (200 t)\right) \tag{76}\\
& i(t)=A \mathrm{e}^{-200 t}+\frac{80 \times 10^{-3}}{8 \times 10^{4}}(200 \sin (200 t)+200 \cos (200 t)) \tag{77}\\
& i(t)=A \mathrm{e}^{-200 t}+10^{-6}(200 \sin (200 t)+200 \cos (200 t)) \mathrm{A} \tag{78}\\
& i(t)=A \mathrm{e}^{-200 t}+2 \times 10^{-4}(\sin (200 t)+\cos (200 t)) \mathrm{A} \tag{79}
\end{align*}
$$

Lastly, we need to solve for the value of the constant A which we will use the initial condition for.

$$
\begin{align*}
i(0) & =A \mathrm{e}^{-200 \times 0}+2 \times 10^{-4}(\sin (200 \times 0)+\cos (200 \times 0)) \tag{80}\\
-2 \times 10^{-4} & =A+2 \times 10^{-4} \tag{81}\\
A & =-4 \times 10^{-4} \tag{82}
\end{align*}
$$

Putting this all together, we get that our final solution for current $i(t)$ is:

$$
\begin{equation*}
i(t)=-4 \times 10^{-4} \mathrm{e}^{-200 t}+2 \times 10^{-4}(\sin (200 t)+\cos (200 t)) \mathrm{A} \tag{83}
\end{equation*}
$$

$$
\begin{equation*}
i(t)=-400 \mathrm{e}^{-200 t}+200 \sin (200 t)+200 \cos (200 t) \mu \mathrm{A} \tag{84}
\end{equation*}
$$

where the transient response is $-400 \mathrm{e}^{-200 t}$ (goes to 0 over time) and the forced response is $200 \sin (200 t)+200 \cos (200 t)$.
(d) (OPTIONAL) Solve for the voltage $v_{C}(t)$ across the capacitor.

Solution: There are two ways to go about solving for $v_{C}(t)$:
(1) You can solve for the voltage by either setting up a differential equation for $v_{\mathcal{C}}(t)$ and solving the differential equation or
(2) use the solution from part (a) and the IV relationship for a capacitor. For this problem, we are simply going to use our solution from part (a) and plug it into the voltage of a capacitor in terms of current:

$$
\begin{align*}
& v_{C}(t)=\frac{1}{C} \int_{0}^{t} i\left(t^{\prime}\right) \mathrm{d} t^{\prime}+v_{C}(0) \tag{85}\\
& v_{C}(t)=\frac{1}{10^{-6}} \int_{0}^{t}\left(-4 \times 10^{-4} \mathrm{e}^{-200 t^{\prime}}+2 \times 10^{-4} \sin \left(200 t^{\prime}\right)+2 \times 10^{-4} \cos \left(200 t^{\prime}\right)\right) \mathrm{d} t^{\prime}+1 \tag{86}\\
& v_{C}(t)=\frac{1}{10^{-6}}\left(\int_{0}^{t}-4 \times 10^{-4} \mathrm{e}^{-200 t^{\prime}} \mathrm{d} t^{\prime}+\int_{0}^{t} 2 \times 10^{-4} \sin \left(200 t^{\prime}\right) \mathrm{d} t^{\prime}+\int_{0}^{t} 2 \times 10^{-4} \cos \left(200 t^{\prime}\right) \mathrm{d} t^{\prime}\right)+1 \tag{87}
\end{align*}
$$

$v_{C}(t)=-400\left[\frac{e^{-200 t^{\prime}}}{200}\right]_{0}^{t}-200\left[\frac{\cos \left(200 t^{\prime}\right)}{200}\right]_{0}^{t}+200\left[\frac{\sin \left(200 t^{\prime}\right)}{200}\right]_{0}^{t}+1$
$v_{C}(t)=-2 e^{-200 t}+2-(\cos (200 t)-1)+(\sin (200 t)-0)+1$
$v_{C}(t)=-2 e^{-200 t}-\cos (200 t)+\sin (200 t)+4 \mathrm{~V}$

