The following notes and sections are useful for this discussion: Note j, Sections 4.5, 5.1, 5.2.

1. Analyzing a Second-Order Circuit (Hambley Example 4.5)

A DC source is connected to a series $R L C$ circuit by a switch that closes at $t=0$ as shown in Figure 1 .
The initial conditions are $i(0)=0$ and $v_{C}(0)=0$.

Figure 1: RLC Circuit
(a) Write the differential equation for $v_{c}(t)$
(b) Solve for $v_{C}(t)$ if $R=300 \Omega$.
(c) Plot the equation you calculated for $v_{C}(t)$. It may be helpful to draw out each term in your general solution and then add them together.

2. Power Delivered by a Sinusoidal Source (Hambley Example 5.1)

Suppose that a voltage given by $v(t)=100 \cos (100 \pi t) \mathrm{V}$ is applied to a $50-\Omega$ resistance.
(a) Sketch $v(t)$ to scale versus time.

(b) Find the rms value of the voltage and the average power delivered to the resistance.
(c) Find the power as a function of time and sketch to scale.

3. Complex Number Review

Recall Euler's Formula:

$$
\begin{align*}
\mathrm{e}^{\mathrm{j} \theta} & =\cos (\theta)+j \sin (\theta) \tag{1}\\
\mathrm{e}^{\mathrm{j} \omega t} & =\cos (\omega t)+j \sin (\omega t) \tag{2}
\end{align*}
$$

Complex exponentials will also be seen written in a magnitude + phase notation as seen in the textbook. The following expressions are equivalent:

$$
\begin{equation*}
R \mathrm{e}^{j \theta}=R \angle \theta \tag{3}
\end{equation*}
$$

(a) Convert the following complex numbers from polar form to Cartesian form.

$$
\begin{align*}
& \mathbf{X}_{\mathbf{1}}=2 \sqrt{2} \mathrm{e}^{\mathrm{j} 225^{\circ}}=2 \sqrt{2} \angle 225^{\circ} \tag{4}\\
& \mathbf{X}_{\mathbf{2}}=\mathrm{e}^{-j 90^{\circ}}=1 \angle-90^{\circ} \tag{5}
\end{align*}
$$

(b) Convert the following complex numbers from Cartesian form to polar form.

$$
\begin{align*}
& \mathbf{X}_{\mathbf{3}}=3+j 4 \tag{6}\\
& \mathbf{X}_{\mathbf{4}}=-\sqrt{3}+j \tag{7}
\end{align*}
$$

(c) Plot the vectors from parts (a) and (b) on the complex plane.

