1. Adding Sinusoids with Phasors (Hambley Example 5.3)

Suppose you are given two sinusoidal inputs:

$$v_1(t) = 20\cos(\omega t - 45^\circ)$$
 (1)

$$v_2(t) = 10\sin(\omega t + 60^\circ)$$
 (2)

Add together the inputs $v_s(t) = v_1(t) + v_2(t)$ such that $v_s(t)$ is composed of a single cosine term.

2. Inductor Impedance (Hambley Exercise 5.6)

(a) A sample inductor circuit is given in Figure 1.

Figure 1: Sample inductor circuit

Derive the impedance of the inductor Z_L given that $V_L = Z_L I_L$.

(b) Assume that now you are told that a voltage of $v_L(t) = 10 \cos(20t)$ is applied to a 0.25-H inductance.

Calculate the impedance of the inductor, the phasor current, and the phasor voltage.

10 y (Imaginary) 8 6 4 2 x (Real) $-10 \ -8 \ -6 \ -4$ -2 2 4 6 8 10 -2 -4

-6

-8

-10

(c) Sketch the phasors V_L and I_L on the complex plane and state the phase relationship of the current and voltage of a pure inductance.

3. Series and Parallel Combinations of Complex Impedances

Consider the circuit shown in Figure 2.

Figure 2: RLC Circuit

(a) Find the voltage $v_C(t)$ in steady state.

(b) Find the phasor current through each element.

(c) Sketch a phasor diagram showing the currents and the source voltage.