1. Adding Sinusoids with Phasors (Hambley Example 5.3)

Suppose you are given two sinusoidal inputs:

$$
\begin{align*}
& v_{1}(t)=20 \cos \left(\omega t-45^{\circ}\right) \tag{1}\\
& v_{2}(t)=10 \sin \left(\omega t+60^{\circ}\right) \tag{2}
\end{align*}
$$

Add together the inputs $v_{s}(t)=v_{1}(t)+v_{2}(t)$ such that $v_{s}(t)$ is composed of a single cosine term.

2. Inductor Impedance (Hambley Exercise 5.6)

(a) A sample inductor circuit is given in Figure 1.

Figure 1: Sample inductor circuit

Derive the impedance of the inductor Z_{L} given that $V_{L}=Z_{L} \mathbf{I}_{\mathbf{L}}$.
(b) Assume that now you are told that a voltage of $v_{L}(t)=10 \cos (20 t)$ is applied to a $0.25-\mathrm{H}$ inductance.

Calculate the impedance of the inductor, the phasor current, and the phasor voltage.
(c) Sketch the phasors V_{L} and I_{L} on the complex plane and state the phase relationship of the current and voltage of a pure inductance.

3. Series and Parallel Combinations of Complex Impedances

Consider the circuit shown in Figure 2.

Figure 2: RLC Circuit
(a) Find the voltage $v_{C}(t)$ in steady state.
(b) Find the phasor current through each element.
(c) Sketch a phasor diagram showing the currents and the source voltage.

