The following notes are useful for this discussion: Note 9.

1. Translating System of Differential Equations from Continuous Time to Discrete Time

Oftentimes, we wish to apply controls model on a computer. However, modeling a continuous time system on a computer is a nontrivial problem. Hence, we turn to discretizing our controls problem. That is, we define a discretized state $\vec{x}_{d}[i]$ and a discretized input $\vec{u}_{d}[i]$ that we "sample" every Δ seconds.
(a) Consider the scalar system below:

$$
\begin{equation*}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\lambda x(t)+b u(t) \tag{1}
\end{equation*}
$$

where $x(t)$ is our state and $u(t)$ is our control input. Let $\lambda \neq 0$ be an arbitrary constant. Further suppose that our input $u(t)$ is piecewise constant, and that $x(t)$ is differentiable everywhere (and thus, continuous everywhere). That is, we define an interval $t \in[i \Delta,(i+1) \Delta)$ such that $u(t)$ is constant over this interval. Mathematically, we write this as

$$
\begin{equation*}
u(t)=u(i \Delta)=u_{d}[i] \text { if } t \in[i \Delta,(i+1) \Delta) \tag{2}
\end{equation*}
$$

The now-discretized input $u_{d}[i]$ is the same as the original input where we only "observe" a change in $u(t)$ every Δ seconds. Similarly, for $x(t)$,

$$
\begin{equation*}
x(t)=x(i \Delta)=x_{d}[i] \tag{3}
\end{equation*}
$$

Let's revisit the solution for eq. (1), when we're given the initial conditions at t_{0}, i.e we know the value of $x\left(t_{0}\right)$ and want to solve for $x(t)$ at any time $t \geq t_{0}$:

$$
\begin{equation*}
x(t)=\mathrm{e}^{\lambda\left(t-t_{0}\right)} x\left(t_{0}\right)+b \int_{t_{0}}^{t} u(\theta) \mathrm{e}^{\lambda(t-\theta)} \mathrm{d} \theta \tag{4}
\end{equation*}
$$

Given that we start at $t=i \Delta$, where $x(t)=x_{d}[i]$ is known, and satisfy eq. (1), where do we end up at $x_{d}[i+1]$? (HINT): Think about the initial condition here. Where does our solution "start"?

Solution: For $t \in[i \Delta,(i+1) \Delta)$, the differential equation takes the form

$$
\begin{equation*}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\lambda x(t)+b u(t)=\lambda x(t)+b u_{d}[i] \tag{5}
\end{equation*}
$$

where we choose our initial condition to be $x(i \Delta)=x_{d}[i]$, since this is a known quantity. We can solve this equation for $x(t)$ using the integral equation from eq. (4) and the fact that $u_{d}[i]$ is a constant value over this interval. In particular, we get the following form

$$
\begin{align*}
x(t) & =\mathrm{e}^{\lambda(t-i \Delta)} \underbrace{x(i \Delta)}_{x_{d}[i]}+b \int_{i \Delta}^{t} \underbrace{u(i \Delta)}_{u_{d}[i]} \mathrm{e}^{\lambda(t-\theta)} \mathrm{d} \theta \tag{6}\\
& =\mathrm{e}^{\lambda(t-i \Delta)} x_{d}[i]+b u_{d}[i] \int_{i \Delta}^{t} \mathrm{e}^{\lambda(t-\theta)} \mathrm{d} \theta \tag{7}
\end{align*}
$$

Plugging in the timestep of interest, we set $t=(i+1) \Delta$, to evaluate $x_{d}[i+1]$ as

$$
\begin{align*}
x_{d}[i+1] & =x((i+1) \Delta) \tag{8}\\
& =\mathrm{e}^{\lambda \Delta} x_{d}[i]+b u_{d}[i] \int_{i \Delta}^{(i+1) \Delta} \mathrm{e}^{\lambda((i+1) \Delta-\theta)} \mathrm{d} \theta \tag{9}\\
& =\mathrm{e}^{\lambda \Delta} x_{d}[i]+b u_{d}[i] \frac{\mathrm{e}^{\lambda \Delta}-\mathrm{e}^{0}}{\lambda} \tag{10}\\
& =\mathrm{e}^{\lambda \Delta} x_{d}[i]+b u_{d}[i] \frac{\mathrm{e}^{\lambda \Delta}-1}{\lambda} \tag{11}
\end{align*}
$$

which gives us the solution for $x_{d}[i+1]$.
(b) Suppose we now have a continuous-time system of differential equations, that forms a vector differential equation. We express this with an input in vector form:

$$
\begin{equation*}
\frac{\mathrm{d} \vec{x}(t)}{\mathrm{d} t}=A \vec{x}(t)+\vec{b} u(t) \tag{12}
\end{equation*}
$$

where $\vec{x}(t)$ is n-dimensional. Suppose further that the matrix A has distinct and non-zero eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. with corresponding eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$. We collect the eigenvectors together and form the matrix $V=\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right]$.
We now wish to find a matrix A_{d} and a vector \vec{b}_{d} such that

$$
\begin{equation*}
\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i]+\vec{b}_{d} u_{d}[i] \tag{13}
\end{equation*}
$$

where $\vec{x}_{d}[i]=\vec{x}(i \Delta)$.
Firstly, define terms

$$
\begin{align*}
& \mathrm{e}^{\Lambda \Delta}=\left[\begin{array}{cccc}
\mathrm{e}^{\lambda_{1} \Delta} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \mathrm{e}^{\lambda_{n} \Delta}
\end{array}\right] \tag{14}\\
& \Lambda^{-1}=\left[\begin{array}{cccc}
\frac{1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{1}{\lambda_{n}}
\end{array}\right] \tag{15}\\
& \overrightarrow{\widetilde{u}}_{d}[i]=V^{-1} \vec{b} u_{d}[i] \tag{16}
\end{align*}
$$

Note that the term $\mathrm{e}^{\Lambda \Delta}$ is just a label for our intents and purposes - this is not the same as applying e^{x} to every element in the matrix Λ.

Complete the following steps to derive a discretized system:

i. Diagonalize the continuous time system using a change of variables (change of basis) to achieve a new system for $\vec{y}(t)$.
ii. Solve the diagonalized system. Remember that we only want a solution over the interval $t \in[i \Delta,(i+1) \Delta)$. Use the value at $t=i \Delta$ as your initial condition.
iii. Discretize the diagonalized system to obtain $\vec{y}_{d}[i]$. Show that

$$
\vec{y}_{d}[i+1]=\underbrace{\left[\begin{array}{cccc}
\mathrm{e}^{\lambda_{1} \Delta} & 0 & \ldots & 0 \tag{17}\\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \mathrm{e}^{\lambda_{n} \Delta}
\end{array}\right]}_{\mathrm{e}^{\Lambda \Delta}} \vec{y}_{d}[i]+\left[\begin{array}{cccc}
\frac{\mathrm{e}^{\lambda_{1} \Delta}-1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{\mathrm{e}^{\lambda_{n} \Delta}-1}{\lambda_{n}}
\end{array}\right] \overrightarrow{\widetilde{u}}_{d}[i]
$$

Then, show that the matrix $\left[\begin{array}{cccc}\frac{\mathrm{e}^{\lambda_{1} \Delta}-1}{\lambda_{1}} & 0 & \ldots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \ldots & \ldots & \frac{\mathrm{e}^{\lambda_{n} \Delta_{-1}}}{\lambda_{n}}\end{array}\right]$ can be compactly written as $\Lambda^{-1}\left(\mathrm{e}^{\Lambda \Delta}-I\right)$.
iv. Undo the change of variables on the discretized diagonal system to get the discretized solution of the original system.

Solution:

i. First, following the hint, we notice that with a full set of distinct eigenvalues and corresponding eigenvectors, we can change coordinates so that $\vec{x}(t)=V \vec{y}(t)$ and $\vec{y}(t)=V^{-1} \vec{x}(t)$. Using this transformation we diagonalize the system of differential equations, i.e

$$
\begin{align*}
\frac{\mathrm{d} \vec{x}(t)}{\mathrm{d} t} & =A \vec{x}(t)+\vec{b} u(t) \tag{18}\\
\Longrightarrow \frac{\mathrm{d} V \vec{y}(t)}{\mathrm{d} t} & =A V \vec{y}(t)+\vec{b} u(t) \tag{19}\\
\therefore \frac{\mathrm{d} \vec{y}(t)}{\mathrm{d} t} & =V^{-1} A V \vec{y}(t)+V^{-1} \vec{b} u(t) \tag{20}
\end{align*}
$$

Note that using the basis of eigenvectors V, we've diagonalized A to get $\Lambda=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \ldots & \ldots & \lambda_{n}\end{array}\right]$

$$
\begin{equation*}
\therefore \frac{\mathrm{d} \vec{y}(t)}{\mathrm{d} t}=\Lambda \vec{y}(t)+V^{-1} \vec{b} u(t) \tag{21}
\end{equation*}
$$

ii. Now, we can use the fact that we care about the solution for $\vec{y}(t)$ over the interval $t \in(i \Delta,(i+$ 1) $\Delta]$, so $u(t)$ is a constant. Thus, we can write eq. (21) as follows:

$$
\begin{equation*}
\frac{\mathrm{d} \vec{y}(t)}{\mathrm{d} t}=\Lambda \vec{y}(t)+\underbrace{V^{-1} \vec{b} u_{d}[i]}_{\overrightarrow{\vec{u}}_{d}[i]} \tag{22}
\end{equation*}
$$

Notice that this system is diagonal (and hence we can write it as a system of n differential equations). We can look at the k th differential equation. We will use the subscripting notation $(\vec{y}(t))_{k}$ and $\left(\overrightarrow{\widetilde{u}}_{d}[i]\right)_{k}$ to denote the k th element of $\vec{y}(t)$ and $\overrightarrow{\widetilde{u}}_{d}[i]$ respectively:

$$
\begin{equation*}
\frac{\mathrm{d}(\vec{y}(t))_{k}}{\mathrm{~d} t}=\lambda_{k}(\vec{y}(t))_{k}+\left(\overrightarrow{\widetilde{u}}_{d}[i]\right)_{k} \tag{23}
\end{equation*}
$$

We can pattern match to the solution in eq. (7), setting $\lambda \rightarrow \lambda_{k}, u_{d}[i] \rightarrow\left(\overrightarrow{\widetilde{u}}_{d}[i]\right)_{k}, b \rightarrow 1$, and $x(t) \rightarrow(\vec{y}(t))_{k}$, to get

$$
\begin{equation*}
(\vec{y}(t))_{k}=\mathrm{e}^{\lambda_{k}(t-i \Delta)}(\vec{y}(i \Delta))_{k}+\left(\widetilde{u}_{d}[i]\right)_{k} \int_{i \Delta}^{t} \mathrm{e}^{\lambda_{k}(t-\theta)} \mathrm{d} \theta \tag{24}
\end{equation*}
$$

for $t \in(i \Delta,(i+1) \Delta]$.
iii. Now, we want to find $\left(\vec{y}_{d}[i+1]\right)_{k}=(\vec{y}((i+1) \Delta))_{k}$, so we can plug in for $t=(i+1) \Delta$ in eq. (24) and we will get

$$
\begin{equation*}
\left(\vec{y}_{d}[i+1]\right)_{k}=(\vec{y}((i+1) \Delta))_{k}=\mathrm{e}^{\lambda_{k} \Delta}(\vec{y}(i \Delta))_{k}+\left(\frac{\mathrm{e}^{\lambda_{k} \Delta}-1}{\lambda_{k}}\right)\left(\overrightarrow{\widetilde{u}}_{d}[i]\right)_{k} \tag{25}
\end{equation*}
$$

Since we have a solution for the k th differential equation in the system, we can arrange all the differential equations in this system in matrix form as follows:

$$
\underbrace{\vec{y}((i+1) \Delta)}_{\vec{y}_{d}[i+1]}=\underbrace{\left[\begin{array}{cccc}
\mathrm{e}^{\lambda_{1} \Delta} & 0 & \ldots & 0 \tag{26}\\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \mathrm{e}^{\lambda_{n} \Delta}
\end{array}\right]}_{\mathrm{e}^{\Lambda \Delta}} \underbrace{\vec{y}(i \Delta)}_{\vec{y}_{d}[i]}+\left[\begin{array}{cccc}
\frac{\mathrm{e}^{\lambda_{1} \Delta}-1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{\mathrm{e}^{\lambda_{n} \Delta}-1}{\lambda_{n}}
\end{array}\right] \overrightarrow{\widetilde{u}}_{d}[i]
$$

Using the notation in the hint, we can write the second matrix in eq. (26) as: ${ }^{1}$

$$
\begin{align*}
{\left[\begin{array}{cccc}
\frac{\mathrm{e}^{\lambda_{1} \Delta}-1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{\mathrm{e}^{\lambda_{n} \Delta}-1}{\lambda_{n}}
\end{array}\right] } & =\left[\begin{array}{cccc}
\frac{\mathrm{e}^{\lambda_{1} \Delta}}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{\mathrm{e}^{\lambda_{n} \Delta}}{\lambda_{n}}
\end{array}\right]+\left[\begin{array}{cccc}
\frac{-1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{-1}{\lambda_{n}}
\end{array}\right] \tag{27}\\
& =\left[\begin{array}{ccccc}
\frac{1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{1}{\lambda_{n}}
\end{array}\right]\left[\begin{array}{ccccccc}
\mathrm{e}^{\lambda_{1} \Delta} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \mathrm{e}^{\lambda_{n} \Delta}
\end{array}\right]-\left[\begin{array}{ccccc}
\frac{1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{1}{\lambda_{n}}
\end{array}\right] \tag{28}\\
& =\Lambda^{-1} \mathrm{e}^{\Lambda \Delta}-\Lambda^{-1} I \tag{29}\\
& =\Lambda^{-1}\left(\mathrm{e}^{\Lambda \Delta}-I\right) \tag{30}
\end{align*}
$$

This gives us

$$
\begin{equation*}
\vec{y}_{d}[i+1]=\vec{y}((i+1) \Delta)=\mathrm{e}^{\Lambda \Delta} \underbrace{\vec{y}(i \Delta)}_{\vec{y}_{d}[i]}+\Lambda^{-1}\left(\mathrm{e}^{\Lambda \Delta}-I\right) \overrightarrow{\tilde{u}}_{d}[i] \tag{31}
\end{equation*}
$$

[^0]iv. Recall that $\vec{x}(t)=V \vec{y}(t)$ so $\vec{x}_{d}[i]=\vec{x}(i \Delta)=V \vec{y}(i \Delta)=V \vec{y}_{d}[i]$, and likewise, $\vec{y}_{d}[i]=V^{-1} \vec{x}_{d}[i]$. Using this form in the simplification, we find that:
\[

$$
\begin{align*}
\vec{x}_{d}[i+1] & =V \vec{y}_{d}[i+1] \tag{32}\\
& =V\left(\mathrm{e}^{\Lambda \Delta} \vec{y}_{d}[i]+\Lambda^{-1}\left(\mathrm{e}^{\Lambda \Delta}-I\right) \overrightarrow{\tilde{u}}_{d}[i]\right) \tag{33}\\
& =\left(V \mathrm{e}^{\Lambda \Delta} V^{-1}\right) \vec{x}_{d}[i]+\left(V \Lambda^{-1}\left(\mathrm{e}^{\Lambda \Delta}-I\right)\right) \overrightarrow{\widetilde{u}}_{d}[i] \tag{34}
\end{align*}
$$
\]

Now, recall that our original goal was to write out A_{d} and \vec{b}_{d}, and we can do that now with our expression. Re-substituting $\overrightarrow{\widetilde{u}}_{d}[i]=V^{-1} \vec{b} u_{d}[i]$ we have:

$$
\begin{align*}
\vec{x}_{d}[i+1] & =\left(V \mathrm{e}^{\Lambda \Delta} V^{-1}\right) \vec{x}_{d}[i]+\left(V \Lambda^{-1}\left(\mathrm{e}^{\Lambda \Delta}-I\right)\right) V^{-1} \vec{b} u_{d}[i] \tag{35}\\
& =\underbrace{\left(V \mathrm{e}^{\Lambda \Delta} V^{-1}\right)}_{A_{d}} \vec{x}_{d}[i]+\underbrace{\left(V \Lambda^{-1}\left(\mathrm{e}^{\Lambda \Delta}-I\right) V^{-1} \vec{b}\right)}_{\vec{b}_{d}} u_{d}[i] \tag{36}
\end{align*}
$$

(c) Consider the discrete-time system

$$
\begin{equation*}
\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i]+\vec{b}_{d} u_{d}[i] \tag{37}
\end{equation*}
$$

Suppose that $\vec{x}_{d}[0]=\vec{x}_{0}$. Unroll the implicit recursion and show that the solution follows the form in eq. (38).

$$
\begin{equation*}
\vec{x}_{d}[i]=A_{d}^{i} \vec{x}_{d}[0]+\left(\sum_{j=0}^{i-1} u_{d}[j] A_{d}^{i-1-j}\right) \vec{b}_{d} \tag{38}
\end{equation*}
$$

You may want to verify that this guess works by checking the form of $\vec{x}_{d}[i+1]$. You don't need to worry about what A_{d} and \vec{b}_{d} actually are in terms of the original parameters.
(Hint: If we have a scalar difference equation, how would you solve the recurrence? Try writing $\vec{x}_{d}[i]$ in terms of $\vec{x}_{d}[0]$ for $i=1,2,3$ and look for a pattern.)
Solution: Here, we derive the unrolled recursion and make a guess at the form of the solution in summation notation. Let's look at the pattern starting with $\vec{x}_{d}[1]$, given that $\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i]+$ $\vec{b}_{d} u_{d}[i]$,

$$
\begin{align*}
\vec{x}_{d}[1] & =A_{d} \vec{x}_{d}[0]+\vec{b}_{d} u_{d}[0] \tag{39}\\
\vec{x}_{d}[2] & =A_{d} \vec{x}_{d}[1]+\vec{b}_{d} u_{d}[1] \tag{40}\\
& =A_{d}\left(A_{d} \vec{x}_{d}[0]+\vec{b}_{d} u_{d}[0]\right)+\vec{b}_{d} u_{d}[1] \tag{41}\\
& =A_{d}^{2} \vec{x}_{d}[0]+A_{d} \vec{b}_{d} u_{d}[0]+\vec{b}_{d} u_{d}[1] \tag{42}\\
\vec{x}_{d}[3] & =A_{d} \vec{x}_{d}[2]+\vec{b}_{d} u_{d}[2] \tag{43}\\
& =A_{d}\left(A_{d}^{2} \vec{x}_{d}[0]+A_{d} \vec{b}_{d} u_{d}[0]+\vec{b}_{d} u_{d}[1]\right)+\vec{b}_{d} u_{d}[2] \tag{44}\\
& =A_{d}^{3} \vec{x}_{d}[0]+A_{d}^{2} \vec{b}_{d} u_{d}[0]+A_{d} \vec{b}_{d} u_{d}[1]+\vec{b}_{d} u_{d}[2] \tag{45}
\end{align*}
$$

So, given this pattern, if we guess:

$$
\begin{equation*}
\vec{x}_{d}[i]=A_{d}^{i} \vec{x}_{d}[0]+\left(\sum_{j=0}^{i-1} u_{d}[j] A_{d}^{i-1-j}\right) \vec{b}_{d} \tag{46}
\end{equation*}
$$

Then, let's see what we get for $\vec{x}_{d}[i+1]$, and make sure our guess is correct:

$$
\begin{align*}
\vec{x}_{d}[i+1] & =A_{d} \vec{x}_{d}[i]+\vec{b}_{d} u_{d}[i] \tag{47}\\
& =A_{d}\left(A_{d}^{i} \vec{x}_{d}[0]+\left(\sum_{j=0}^{i-1} u_{d}[j] A_{d}^{i-1-j}\right) \vec{b}_{d}\right)+\vec{b}_{d} u_{d}[i] \tag{48}\\
& =A_{d}^{i+1} \vec{x}_{d}[0]+\left(\left(\sum_{j=0}^{i-1} u_{d}[j] A_{d}^{i-j}\right)+u_{d}[i]\right) \vec{b}_{d} \tag{49}\\
& =A_{d}^{i+1} \vec{x}_{d}[0]+\left(\sum_{j=0}^{i} u_{d}[j] A_{d}^{i-j}\right) \vec{b}_{d} \tag{50}
\end{align*}
$$

This satisfies (46), for $i+1$ and hence our guess was correct!

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Druv Pai.
- Anant Sahai.
- Nikhil Shinde.
- Sanjit Batra.
- Aditya Arun.
- Kuan-Yun Lee.
- Kumar Krishna Agrawal.

[^0]: ${ }^{1}$ In a matrix product, if both matrices are diagonal, the product is commutative.

