The following notes are useful for this discussion: Note 10, Note 11

1. System Identification by Means of Least Squares

(a) Consider the scalar discrete-time system

$$
\begin{equation*}
x[i+1]=a x[i]+b u[i]+w[i] \tag{1}
\end{equation*}
$$

Where the scalar state at timestep i is $x[i]$, the input applied at timestep i is $u[i]$ and $w[i]$ represents some (small) external disturbance that also participated at timestep i (which we cannot predict or control, it's a purely random disturbance).
Assume that you have measurements for the states $x[i]$ from $i=0$ to ℓ and also measurements for the controls $u[i]$ from $i=0$ to $\ell-1$. Further assume $\ell \geq 2$.
Show that we can set up a linear system as in eq. (2) to find constants a and b. How do we solve this system?

$$
\underbrace{\left[\begin{array}{c}
x[1] \tag{2}\\
x[2] \\
\vdots \\
x[\ell]
\end{array}\right]}_{\vec{s}} \approx \underbrace{\left[\begin{array}{cc}
x[0] & u[0] \\
x[1] & u[1] \\
\vdots & \vdots \\
x[\ell-1] & u[\ell-1]
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{l}
a \\
b
\end{array}\right]}_{\vec{p}}
$$

Solution: Our model is of the form

$$
\begin{equation*}
x[i+1]=a x[i]+b u[i]+w[i] \tag{3}
\end{equation*}
$$

where $w[i]$ is our error term and we are interested in a and b. Since we cannot predict the disturbance $w[i]$ (and therefore cannot have a parameter in our solution associated with the effect of the disturbance on our system), we will solve the adjusted equation in eq. (4).

$$
\begin{equation*}
x[i+1] \approx a x[i]+b u[i] \tag{4}
\end{equation*}
$$

We have measurements from $i=1$ to $i=m$, and so our least squares formulation is:

$$
\underbrace{\left[\begin{array}{c}
x[1] \tag{5}\\
x[2] \\
\vdots \\
x[\ell]
\end{array}\right]}_{\vec{s}} \approx \underbrace{\left[\begin{array}{cc}
x[0] & u[0] \\
x[1] & u[1] \\
\vdots & \vdots \\
x[\ell-1] & u[\ell-1]
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{c}
a \\
b
\end{array}\right]}_{\vec{p}}
$$

D is not necessarily a square matrix (it is tall), so we cannot invert it and solve for \vec{p}. Hence, we use least squares like previously mentioned. Thus, our best approximation for \vec{p} is

$$
\begin{equation*}
\widehat{\vec{p}}=\left(D^{\top} D\right)^{-1} D^{\top} \vec{s} \tag{6}
\end{equation*}
$$

Since we are using least squares, we can also group our estimation error (remember, $\widehat{\vec{p}} \neq \vec{p}$ necessarily) into $w[i]$.
(b) What if there were now two distinct scalar inputs to a scalar system

$$
\begin{equation*}
x[i+1]=a x[i]+b_{1} u_{1}[i]+b_{2} u_{2}[i]+w[i] \tag{7}
\end{equation*}
$$

and that we have measurements as before, but now also for both of the control inputs.
Set up a least-squares problem that you can solve to get an estimate of the unknown system parameters a, b_{1}, b_{2}.
Solution: Our new model is of the form

$$
\begin{equation*}
x[i+1]=a x[i]+b_{1} u_{1}[i]+b_{2} u_{2}[i]+w[i] \tag{8}
\end{equation*}
$$

where $w[i]$ is our error term and we are interested in a, b_{1}, b_{2}. As we did before, we will modify the system and drop the disturbance term, converting the equality to an approximation.

$$
\begin{equation*}
x[i+1] \approx a x[i]+b_{1} u_{1}[i]+b_{2} u_{2}[i] \tag{9}
\end{equation*}
$$

As before, we have $[1, m]$ measurements, and so our least squares formulation is:

$$
\underbrace{\left[\begin{array}{c}
x[1] \tag{10}\\
x[2] \\
\vdots \\
x[\ell]
\end{array}\right]}_{\vec{s}} \approx \underbrace{\left[\begin{array}{ccc}
x[0] & u_{1}[0] & u_{2}[0] \\
x[1] & u_{1}[1] & u_{2}[1] \\
\vdots & \vdots & \vdots \\
x[\ell-1] & u_{1}[\ell-1] & u_{2}[\ell-1]
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{c}
a \\
b_{1} \\
b_{2}
\end{array}\right]}_{\vec{p}}
$$

(c) What could go wrong in the previous case? For what kind of inputs would make least-squares fail to give you the parameters you want?
Solution: We can take a look at the least squares formula, and think about what the possible failure points are.

$$
\begin{equation*}
\widehat{\vec{p}}=\left(D^{\top} D\right)^{-1} D^{\top} \vec{s} \tag{11}
\end{equation*}
$$

In this equation, the likely point of failure is the inversion of $D^{\top} D$; the other operations (matrixmatrix multiplications, matrix-vector multiplications) do not have the same issue.
$D^{\top} D$ might not be invertible when D has columns that are not linearly independent. For example, it could be because the inputs \vec{u}_{1} and \vec{u}_{2} are too similar, as if $\vec{u}_{1}=\alpha \vec{u}_{2}$. We need these two inputs to be different and sufficiently varied so that least-squares does not fail.
(d) Now consider the two dimensional state case with a single input.

$$
\vec{x}[i+1]=\left[\begin{array}{l}
x_{1}[i+1] \tag{12}\\
x_{2}[i+1]
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] u[i]+\vec{w}[i]
$$

How can we treat this like two parallel problems to set this up using least-squares to get estimates for the unknown parameters $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}, b_{2}$? Write the least squares solution in terms of your known matrices and vectors (including based on the labels you gave to various matrices/vectors in previous parts). Hint: What work/computation can we reuse across the two problems?

Solution: We can rewrite eq. (12) as

$$
\left[\begin{array}{l}
x_{1}[i+1] \tag{13}\\
x_{2}[i+1]
\end{array}\right]=\left[\begin{array}{l}
a_{11} x_{1}[i]+a_{12} x_{2}[i]+b_{1} u[i] \\
a_{21} x_{1}[i]+a_{22} x_{2}[i]+b_{2} u[i]
\end{array}\right]
$$

We can set up a problem to solve for a_{11}, a_{12}, b_{1} (call this subsystem 1) and another problem to solve for a_{21}, a_{22}, b_{2} (call this subsystem 2). We can rewrite the first row of eq. (13) as

$$
x_{1}[i+1]=\left[\begin{array}{lll}
x_{1}[i] & x_{2}[i] & u[i]
\end{array}\right]\left[\begin{array}{c}
a_{11} \tag{14}\\
a_{12} \\
b_{1}
\end{array}\right]
$$

and likewise for the second row

$$
x_{2}[i+1]=\left[\begin{array}{lll}
x_{1}[i] & x_{2}[i] & u[i]
\end{array}\right]\left[\begin{array}{c}
a_{21} \tag{15}\\
a_{22} \\
b_{2}
\end{array}\right]
$$

To find the unknowns in subsystem 1, we can set up the following least squares problem:

$$
\underbrace{\left[\begin{array}{c}
x_{1}[1] \tag{16}\\
x_{1}[2] \\
\vdots \\
x_{1}[\ell]
\end{array}\right]}_{\vec{s}_{1}} \approx \underbrace{\left[\begin{array}{ccc}
x_{1}[0] & x_{2}[0] & u[0] \\
x_{1}[1] & x_{2}[1] & u[1 \\
\vdots & \vdots & \vdots \\
x_{1}[\ell-1] & x_{2}[\ell-1] & u[\ell-1]
\end{array}\right]}_{D_{1}} \underbrace{\left[\begin{array}{c}
a_{11} \\
a_{12} \\
b_{1}
\end{array}\right]}_{\vec{p}_{1}}
$$

Now, to find the unknowns in subsystem 2, we can set up the following least squares problem:

$$
\underbrace{\left[\begin{array}{c}
x_{2}[1] \tag{17}\\
x_{2}[2] \\
\vdots \\
x_{2}[\ell]
\end{array}\right]}_{\vec{s}_{2}} \approx \underbrace{\left[\begin{array}{ccc}
x_{1}[0] & x_{2}[0] & u[0] \\
x_{1}[1] & x_{2}[1] & u[1 \\
\vdots & \vdots & \vdots \\
x_{1}[\ell-1] & x_{2}[\ell-1] & u[\ell-1]
\end{array}\right]}_{D_{2}} \underbrace{\left[\begin{array}{c}
a_{21} \\
a_{22} \\
b_{2}
\end{array}\right]}_{\vec{p}_{2}}
$$

Notice that $D_{1}=D_{2}$. Hence, we can write $D=D_{1}=D_{2}$, and we only need to compute $\left(D^{\top} D\right)^{-1} D^{\top}$ once. Hence, the solution for the i th subsystem (for $i \in\{1,2\}$) is

$$
\begin{equation*}
\widehat{\vec{p}}_{i}=\left(D^{\top} D\right)^{-1} D^{\top} \vec{s}_{i} \tag{18}
\end{equation*}
$$

Furthermore, we can horizontally stack the two separate problems for each subsystem as follows:

$$
\underbrace{\left[\begin{array}{cc}
x_{1}[1] & x_{2}[1] \tag{19}\\
x_{1}[2] & x_{2}[2] \\
\vdots & \vdots \\
x_{1}[\ell] & x_{2}[\ell]
\end{array}\right]}_{S} \approx \underbrace{\left[\begin{array}{ccc}
x_{1}[0] & x_{2}[0] & u[0] \\
x_{1}[1] & x_{2}[1] & u[1] \\
\vdots & \vdots & \vdots \\
x_{1}[\ell-1] & x_{2}[\ell-1] & u[\ell-1]
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{cc}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
b_{1} & b_{2}
\end{array}\right]}_{P}
$$

Finally, solving this as a single least squares problem gives us

$$
\begin{equation*}
\widehat{P}=\left(D^{\top} D\right)^{-1} D^{\top} S \tag{20}
\end{equation*}
$$

2. Stability Examples and Counterexamples

(a) Consider the circuit below with $R=1 \Omega, C=0.5 \mathrm{~F}$, and $u(t)$ is some function bounded between $-K$ and K for some constant $K \in \mathbb{R}$ (for example $K \cos (t)$). Furthermore assume that $v_{C}(0)=0 \mathrm{~V}$ (that the capacitor is initially discharged).

This circuit can be modeled by the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} v_{C}(t)}{\mathrm{d} t}=-2 v_{C}(t)+2 u(t) \tag{21}
\end{equation*}
$$

Show that the differential equation is always stable (that is, as long as the input $u(t)$ is bounded, $v_{C}(t)$ also stays bounded). Consider what this means in the physical circuit. HINT: You may want to use the triangle inequality, i.e. $|a+b| \leq|a|+|b|$, and the triangle inequality for integrals, i.e. $\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leq \int_{a}^{b}|f(x)| \mathrm{d} x$. When we use $|\cdot|$ notation here, we will take this to mean the magnitude, rather than the absolute value (since we can be dealing with complex numbers).
Solution: We can apply the integral solution for a nonhomogeneous differential equation to demonstrate boundedness of the solution. The general solution to $\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\lambda x(t)+b u(t)$ is $x(t)=$ $x_{0} \mathrm{e}^{\lambda t}+\int_{0}^{t} \mathrm{e}^{\lambda(t-\theta)} b u(\theta) \mathrm{d} \theta$. Here, we can say that:

$$
\begin{align*}
v_{C}(t) & =v_{C}(0) \mathrm{e}^{-2 t}+\int_{0}^{t} \mathrm{e}^{-2(t-\theta)} 2 u(\theta) \mathrm{d} \theta \tag{22}\\
& =v_{C}(0) \mathrm{e}^{-2 t}+2 \int_{0}^{t} \mathrm{e}^{-2(t-\theta)} u(\theta) \mathrm{d} \theta \tag{23}
\end{align*}
$$

We wish to show $\left|v_{C}(t)\right| \leq M$ for all $t \geq 0$, where $M \in \mathbb{R}$ is some constant (this is another way to say that something is "bounded"). We can take the absolute value around eq. (23) as follows:

$$
\begin{align*}
\left|v_{C}(t)\right| & =\left|v_{C}(0) \mathrm{e}^{-2 t}+2 \int_{0}^{t} \mathrm{e}^{-2(t-\theta)} u(\theta) \mathrm{d} \theta\right| \tag{24}\\
& \leq\left|v_{C}(0) \mathrm{e}^{-2 t}\right|+\left|2 \int_{0}^{t} \mathrm{e}^{-2(t-\theta)} u(\theta) \mathrm{d} \theta\right| \tag{25}\\
& \leq\left|v_{C}(0) \mathrm{e}^{-2 t}\right|+2 \int_{0}^{t}\left|\mathrm{e}^{-2(t-\theta)} u(\theta)\right| \mathrm{d} \theta \tag{26}\\
& =\left|v_{C}(0)\right| \mathrm{e}^{-2 t}+2 \int_{0}^{t} \mathrm{e}^{-2(t-\theta)}|u(\theta)| \mathrm{d} \theta \tag{27}
\end{align*}
$$

where we use the traditional triangle inequality to obtain eq. (25) and the integral triangle inequality to obtain eq. (26). We know $v_{C}(0)=0$, so the first term is 0 . Even if it is nonzero, we may assume that it is some finite constant. Furthermore, $0 \leq \mathrm{e}^{-2 t} \leq 1$ for $t \geq 0$ (it is a decaying exponential). Hence, the $\left|v_{C}(0)\right| \mathrm{e}^{-2 t}$ term is bounded. Next, we are allowed to assume that
$|u(t)| \leq K$ from the statement of the problem. This will let us obtain

$$
\begin{align*}
\left|v_{C}(t)\right| & \leq 2 \int_{0}^{t} \mathrm{e}^{-2(t-\theta)} \underbrace{|u(\theta)|}_{\leq K} \mathrm{~d} \theta \tag{28}\\
& \leq 2 K \int_{0}^{t} \mathrm{e}^{-2(t-\theta)} \mathrm{d} \theta \tag{29}\\
& =K\left(1-\mathrm{e}^{-2 t}\right) \tag{30}
\end{align*}
$$

Because $\mathrm{e}^{-2 t} \geq 0,1-\mathrm{e}^{-2 t} \leq 1$. Hence, $\left|v_{C}(t)\right| \leq K$ so $v_{C}(t)$ is bounded.
(b) (PRACTICE) Now, suppose that in the circuit of part 2.a we replaced the resistor with an inductor as in fig. 1.

Figure 1: The original circuit with an inductor in place of the resistor.

Let $L=1 \mathrm{mH}$. Repeat part 2.a for the new circuit (with an inductor). Consider the following process to arrive at the result:
i. Derive the system of differential equations using KCL, KVL, and NVA. Show that the system is $\frac{\mathrm{d}}{\mathrm{d} t}\left[\begin{array}{l}v_{C}(t) \\ i_{L}(t)\end{array}\right]=\left[\begin{array}{cc}0 & \frac{1}{C} \\ -\frac{1}{L} & 0\end{array}\right]\left[\begin{array}{c}v_{C}(t) \\ i_{L}(t)\end{array}\right]+\left[\begin{array}{c}0 \\ \frac{1}{L}\end{array}\right] u(t)$ with the initial condition being $\left[\begin{array}{c}v_{C}(0) \\ i_{L}(0)\end{array}\right]=\overrightarrow{0}$.
ii. Solve the matrix differential equation, using diagonalization if needed. Show that the diagonalized system has a solution

$$
\vec{y}(t)=\left[\begin{array}{l}
\frac{1}{2 L C} \mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t} \int_{0}^{t} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} \theta} u(\theta) \mathrm{d} \theta \tag{31}\\
\frac{1}{2 L C} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t} \int_{0}^{t} \mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} \theta} u(\theta) \mathrm{d} \theta
\end{array}\right]
$$

where $\vec{y}(t)=V^{-1}\left[\begin{array}{c}v_{C}(t) \\ i_{L}(t)\end{array}\right]$ for change of basis matrix V. You may use the fact that the eigenvalue, eigenvector pairs of $\left[\begin{array}{cc}0 & \frac{1}{C} \\ -\frac{1}{L} & 0\end{array}\right]$ are $\left(\mathrm{j} \frac{1}{\sqrt{L C}},\left[\begin{array}{c}-\mathrm{j} \sqrt{\frac{L}{C}} \\ 1\end{array}\right]\right)$ and $\left(-\mathrm{j} \frac{1}{\sqrt{L C}},\left[\begin{array}{c}\mathrm{j} \sqrt{\frac{L}{C}} \\ 1\end{array}\right]\right)$.
iii. Apply a similar process from part 2.a to show that, if we have a bounded input $u(t)$, then the system can grow unboundedly. When showing that a system is unstable, it suffices to choose a bounded $u(t)$ that makes the system unbounded. We can choose $u(t)=$ $2 \cos \left(\frac{1}{\sqrt{L C}}\right)=\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}+\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t} 1$. HINT: You may use the fact that $i_{L}(t)=y_{1}(t)+y_{2}(t)$.

[^0]Hint: You might find it useful to revisit the process of generating the state-space equations for $v_{C}(t)$ and $i_{L}(t)$ as done in Note 4 for the LC Tank. The difference is that here, we have an input voltage.
Solution: 2.(b)i:
First, we begin forming the vector state-space equation, which involves relating $v_{C}(t)$ and $i_{L}(t)$ to their derivatives and the input voltage.

$$
\begin{align*}
C \frac{\mathrm{~d} v_{C}(t)}{\mathrm{d} t} & =i_{C}(t)=i_{L}(t) \tag{32}\\
\Longrightarrow \frac{\mathrm{d} v_{C}(t)}{\mathrm{d} t} & =\frac{1}{C} i_{L}(t) \tag{33}\\
L \frac{\mathrm{~d} i_{L}(t)}{\mathrm{d} t} & =v_{L}(t)=u(t)-v_{C}(t) \tag{34}\\
\Longrightarrow \frac{\mathrm{d} i_{L}(t)}{\mathrm{d} t} & =\frac{1}{L} v_{L}(t)=-\frac{1}{L} v_{C}(t)+\frac{1}{L} u(t) \tag{35}
\end{align*}
$$

Combining this info, we find:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{c}
v_{C}(t) \tag{36}\\
i_{L}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & \frac{1}{C} \\
-\frac{1}{L} & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
v_{C}(t) \\
i_{L}(t)
\end{array}\right]}_{\vec{x}(t)}+\underbrace{\left[\begin{array}{c}
0 \\
\frac{1}{L}
\end{array}\right]}_{\vec{b}} u(t)
$$

2.(b)ii:

This is not a diagonal system, so we have to diagonalize it first. We start by solving for the eigenvalues and eigenvectors of A :

$$
\begin{array}{ll}
\lambda_{1}=\mathrm{j} \frac{1}{\sqrt{L C}} & \vec{v}_{1}=\left[\begin{array}{c}
-j \sqrt{\frac{L}{C}} \\
1
\end{array}\right] \\
\lambda_{2}=-\mathrm{j} \frac{1}{\sqrt{L C}} & \vec{v}_{1}=\left[\begin{array}{c}
\mathrm{j} \sqrt{\frac{L}{C}} \\
1
\end{array}\right] \tag{38}
\end{array}
$$

Note that these eigenvalues are purely imaginary. This will be helpful later. Our change of basis matrix is $V=\left[\begin{array}{cc}-\mathrm{j} \sqrt{\frac{L}{C}} & \mathrm{j} \sqrt{\frac{L}{C}} \\ 1 & 1\end{array}\right]$, so we can define our change of basis as $\vec{y}(t)=V^{-1} \vec{x}(t)$. Note that the new diagonal system will be

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{y}(t) & =\left[\begin{array}{cc}
\mathrm{j} \frac{1}{\sqrt{L C}} & 0 \\
0 & -\mathrm{j} \frac{1}{\sqrt{L C}}
\end{array}\right] \vec{y}(t)+V^{-1} \vec{b} u(t) \tag{39}\\
& \left.=\left[\begin{array}{cc}
\mathrm{j} \frac{1}{\sqrt{L C}} & 0 \\
0 & -\mathrm{j} \frac{1}{\sqrt{L C}}
\end{array}\right] \vec{y}(t)+\left(\begin{array}{cc}
-\mathrm{j} \sqrt{\frac{L}{C}} & \mathrm{j} \sqrt{\frac{L}{C}} \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
\frac{1}{L}
\end{array}\right]\right) u(t) \tag{40}\\
& =\left[\begin{array}{cc}
\mathrm{j} \frac{1}{\sqrt{L C}} & 0 \\
0 & -\mathrm{j} \frac{1}{\sqrt{L C}}
\end{array}\right] \vec{y}(t)+\left[\begin{array}{c}
\frac{1}{2 L C} \\
\frac{1}{2 L C}
\end{array}\right] u(t) \tag{41}
\end{align*}
$$

so our system of equations is

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} y_{1}(t)=\mathrm{j} \frac{1}{\sqrt{L C}} y_{1}(t)+\frac{1}{2 L C} u(t) \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} y_{2}(t)=-\mathrm{j} \frac{1}{\sqrt{L C}} y_{2}(t)+\frac{1}{2 L C} u(t) \tag{43}
\end{equation*}
$$

Recall that $\vec{x}(0)=\overrightarrow{0}$, so $\vec{y}(t)=\overrightarrow{0}$ (where $\overrightarrow{0}$ is a vector of all zeros). Solving this differential equation now, we get

$$
\begin{align*}
& y_{1}(t)=\underbrace{y_{1}(0)}_{0} e^{j \frac{1}{\sqrt{L C}} t}+\int_{0}^{t} \mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}}(t-\theta)}\left(\frac{1}{2 L C} u(\theta)\right) \mathrm{d} \theta \tag{45}\\
& y_{2}(t)=\underbrace{y_{2}(0)}_{0} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}+\int_{0}^{t} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}}(t-\theta)}\left(\frac{1}{2 L C} u(\theta)\right) \mathrm{d} \theta \tag{46}
\end{align*}
$$

Simplifying and stacking the solutions in vector form,

$$
\left[\begin{array}{l}
v_{C}(t) \tag{47}\\
i_{L}(t)
\end{array}\right]=\vec{x}(t)=V\left[\begin{array}{l}
\frac{1}{2 L C} \mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L L}} t} \int_{0}^{t} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{\text { LC}}} \theta} u(\theta) \mathrm{d} \theta \\
\frac{1}{2 L C} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t} \int_{0}^{t} \mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} \theta} u(\theta) \mathrm{d} \theta
\end{array}\right]
$$

2.(b)iii:

We wish to show $\vec{x}(t)$ is unbounded, given some bounded input $u(t)$. When showing a vector is bounded, we can show that all of its individual, scalar entries are bounded. Alternatively, when showing a vector is unbounded, it is enough to show that one of its entries will be unbounded. Note that $i_{L}(t)=y_{1}(t)+y_{2}(t)$ (which we see by computing $\vec{x}(t)=V \vec{y}(t)$). We can show that this quantity is unbounded. Recall that

$$
\begin{align*}
y_{1}(t) & =\frac{\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C} \int_{0}^{t} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} \theta} u(\theta) \mathrm{d} \theta \tag{48}\\
y_{2}(t) & =\frac{\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C} \int_{0}^{t} \mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} \theta} u(\theta) \mathrm{d} \theta \tag{49}\\
\Longrightarrow i_{L}(t) & =\frac{\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C} \int_{0}^{t} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} \theta} u(\theta) \mathrm{d} \theta+\frac{\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C} \int_{0}^{t} \mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} \theta} u(\theta) \mathrm{d} \theta \tag{50}
\end{align*}
$$

Now, we have to make some choice of a bounded input $u(t)$ so the entire term is unbounded as $t \rightarrow \infty$. We can choose $u(t)=\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}+\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}=2 \cos \left(\frac{1}{\sqrt{L C}} t\right)$ which is a bounded sinusoidal function. We can first compute $i_{L}(t)$ with this input:

$$
\begin{align*}
i_{L}(t) & =\frac{\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C} \int_{0}^{t} \mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} \theta}\left(\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} \theta}+\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} \theta}\right) \mathrm{d} \theta+\frac{\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C} \int_{0}^{t} \mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} \theta}\left(\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} \theta}+\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} \theta}\right) \mathrm{d} \theta \tag{51}\\
& =\frac{\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C} \int_{0}^{t} 1+\mathrm{e}^{-\mathrm{j} \frac{2}{\sqrt{L C}} \theta} \mathrm{~d} \theta+\frac{\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C} \int_{0}^{t} 1+\mathrm{e}^{\mathrm{j} \frac{2}{\sqrt{L C}} \theta} \mathrm{~d} \theta \tag{52}\\
& =\frac{\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C}\left(t+\frac{1-\mathrm{e}^{-\mathrm{j} \frac{2}{\sqrt{L C}} t}}{\mathrm{j} \frac{2}{\sqrt{L C}}}\right)+\frac{\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 L C}\left(t+\frac{\mathrm{e}^{\mathrm{j} \frac{2}{\sqrt{L C}} t}-1}{\mathrm{j} \frac{2}{\sqrt{L C}}}\right) \tag{53}\\
& =\frac{t}{L C}\left(\frac{\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}+\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2}\right)+\frac{1}{\sqrt{L C}}\left(\frac{\mathrm{e}^{\mathrm{j} \frac{1}{\sqrt{L C}} t}-\mathrm{e}^{-\mathrm{j} \frac{1}{\sqrt{L C}} t}}{2 \mathrm{j}}\right) \tag{54}
\end{align*}
$$

$$
\begin{equation*}
=\frac{t}{L C} \cos \left(\frac{t}{\sqrt{L C}}\right)+\frac{1}{\sqrt{L C}} \sin \left(\frac{t}{\sqrt{L C}}\right) \tag{55}
\end{equation*}
$$

Notice that the cos and sin terms are bounded, but the cos term is multiplied by a t, so as $t \rightarrow \infty$, $i_{L}(t) \rightarrow \infty$. Hence, the system is unstable. Generally, we say a system with eigenvalues having negative real part implies stability. Here, the real part of the eigenvalues is 0 , so the system is unstable.
(c) Thus far, we have dealt with continuous systems so it also makes sense to consider discrete systems. Consider the discrete system

$$
\begin{equation*}
x[i+1]=2 x[i]+u[i] \tag{56}
\end{equation*}
$$

with $x[0]=0$.
Is the system stable or unstable? If unstable, find a bounded input sequence $u[i]$ that causes the system to "blow up".
Solution: Notice that, if we had the system

$$
\begin{equation*}
x[i+1]=2 x[i] \tag{57}
\end{equation*}
$$

then we can write $x[i+1]=2^{i} x[1]$. So, if we can somehow make $x[1]$ nonzero using a bounded input (e.g. equal to 1 , for simplicity), then as $i \rightarrow \infty, x[i+1] \rightarrow \infty$. We know that $x[0]=0$, and that $x[1]=2 x[0]+u[0]=u[0]$. Hence, we can set $u[0]=1$ and then $x[1]=1$. We have achieved what we wanted, i.e. to make $x[1]$ a nonzero value using the bounded input $u[0]=1$. Now, for the other timesteps $i>0$, we can set $u[i]=0$ since that would leave us with the system in eq. (57). Written explicitly, our bounded input is

$$
u[i]= \begin{cases}1 & i=0 \tag{58}\\ 0 & i>0\end{cases}
$$

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Anant Sahai.
- Regina Eckert.
- Kareem Ahmad.
- Sidney Buchbinder.

[^0]: ${ }^{1}$ The natural frequency of this system is $\omega_{n}=\frac{1}{\sqrt{L C}}$. If we excite this system at a period equal to the natural frequency, we can make it grow unboundedly. This is similar to pushing a swing at the same rate it swings, which makes it swing farther.

