
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Discussion 7B

The following notes are useful for this discussion: Note 10, Note 11

1. System Identification by Means of Least Squares

(a) Consider the scalar discrete-time system

x[i + 1] = ax[i] + bu[i] + w[i] (1)

Where the scalar state at timestep i is x[i], the input applied at timestep i is u[i] and w[i] represents
some (small) external disturbance that also participated at timestep i (which we cannot predict
or control, it’s a purely random disturbance).

Assume that you have measurements for the states x[i] from i = 0 to ` and also measurements
for the controls u[i] from i = 0 to `− 1. Further assume ` ≥ 2.

Show that we can set up a linear system as in eq. (2) to find constants a and b. How do we
solve this system? 

x[1]
x[2]

...
x[`]


︸ ︷︷ ︸

~s

≈


x[0] u[0]
x[1] u[1]

...
...

x[`− 1] u[`− 1]


︸ ︷︷ ︸

D

[
a
b

]
︸︷︷︸
~p

(2)

Solution: Our model is of the form

x[i + 1] = ax[i] + bu[i] + w[i] (3)

where w[i] is our error term and we are interested in a and b. Since we cannot predict the distur-
bance w[i] (and therefore cannot have a parameter in our solution associated with the effect of
the disturbance on our system), we will solve the adjusted equation in eq. (4).

x[i + 1] ≈ ax[i] + bu[i] (4)

We have measurements from i = 1 to i = m, and so our least squares formulation is:
x[1]
x[2]

...
x[`]


︸ ︷︷ ︸

~s

≈


x[0] u[0]
x[1] u[1]

...
...

x[`− 1] u[`− 1]


︸ ︷︷ ︸

D

[
a
b

]
︸︷︷︸
~p

(5)

D is not necessarily a square matrix (it is tall), so we cannot invert it and solve for ~p. Hence, we
use least squares like previously mentioned. Thus, our best approximation for ~p is

~̂p =
(

D>D
)−1

D>~s (6)
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Since we are using least squares, we can also group our estimation error (remember, ~̂p 6= ~p
necessarily) into w[i].

(b) What if there were now two distinct scalar inputs to a scalar system

x[i + 1] = ax[i] + b1u1[i] + b2u2[i] + w[i] (7)

and that we have measurements as before, but now also for both of the control inputs.

Set up a least-squares problem that you can solve to get an estimate of the unknown system
parameters a, b1, b2.

Solution: Our new model is of the form

x[i + 1] = ax[i] + b1u1[i] + b2u2[i] + w[i] (8)

where w[i] is our error term and we are interested in a, b1, b2. As we did before, we will modify
the system and drop the disturbance term, converting the equality to an approximation.

x[i + 1] ≈ ax[i] + b1u1[i] + b2u2[i] (9)

As before, we have [1, m] measurements, and so our least squares formulation is:
x[1]
x[2]

...
x[`]


︸ ︷︷ ︸

~s

≈


x[0] u1[0] u2[0]
x[1] u1[1] u2[1]

...
...

...
x[`− 1] u1[`− 1] u2[`− 1]


︸ ︷︷ ︸

D

 a
b1

b2


︸ ︷︷ ︸

~p

(10)

(c) What could go wrong in the previous case? For what kind of inputs would make least-squares
fail to give you the parameters you want?

Solution: We can take a look at the least squares formula, and think about what the possible
failure points are.

~̂p =
(

D>D
)−1

D>~s. (11)

In this equation, the likely point of failure is the inversion of D>D; the other operations (matrix-
matrix multiplications, matrix-vector multiplications) do not have the same issue.

D>D might not be invertible when D has columns that are not linearly independent. For exam-
ple, it could be because the inputs ~u1 and ~u2 are too similar, as if ~u1 = α~u2. We need these two
inputs to be different and sufficiently varied so that least-squares does not fail.

(d) Now consider the two dimensional state case with a single input.

~x[i + 1] =

[
x1[i + 1]
x2[i + 1]

]
=

[
a11 a12

a21 a22

]
~x[i] +

[
b1

b2

]
u[i] + ~w[i] (12)

How can we treat this like two parallel problems to set this up using least-squares to get
estimates for the unknown parameters a11, a12, a21, a22, b1, b2? Write the least squares solution
in terms of your known matrices and vectors (including based on the labels you gave to vari-
ous matrices/vectors in previous parts). Hint: What work/computation can we reuse across the two
problems?
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Solution: We can rewrite eq. (12) as[
x1[i + 1]
x2[i + 1]

]
=

[
a11x1[i] + a12x2[i] + b1u[i]
a21x1[i] + a22x2[i] + b2u[i]

]
(13)

We can set up a problem to solve for a11, a12, b1 (call this subsystem 1) and another problem to
solve for a21, a22, b2 (call this subsystem 2). We can rewrite the first row of eq. (13) as

x1[i + 1] =
[

x1[i] x2[i] u[i]
] a11

a12

b1

 (14)

and likewise for the second row

x2[i + 1] =
[

x1[i] x2[i] u[i]
] a21

a22

b2

 (15)

To find the unknowns in subsystem 1, we can set up the following least squares problem:
x1[1]
x1[2]

...
x1[`]


︸ ︷︷ ︸

~s1

≈


x1[0] x2[0] u[0]
x1[1] x2[1] u[1

...
...

...
x1[`− 1] x2[`− 1] u[`− 1]


︸ ︷︷ ︸

D1

a11

a12

b1


︸ ︷︷ ︸

~p1

(16)

Now, to find the unknowns in subsystem 2, we can set up the following least squares problem:
x2[1]
x2[2]

...
x2[`]


︸ ︷︷ ︸

~s2

≈


x1[0] x2[0] u[0]
x1[1] x2[1] u[1

...
...

...
x1[`− 1] x2[`− 1] u[`− 1]


︸ ︷︷ ︸

D2

a21

a22

b2


︸ ︷︷ ︸

~p2

(17)

Notice that D1 = D2. Hence, we can write D = D1 = D2, and we only need to compute(
D>D

)−1D> once. Hence, the solution for the ith subsystem (for i ∈ {1, 2}) is

~̂pi =
(

D>D
)−1

D>~si (18)

Furthermore, we can horizontally stack the two separate problems for each subsystem as follows:
x1[1] x2[1]
x1[2] x2[2]

...
...

x1[`] x2[`]


︸ ︷︷ ︸

S

≈


x1[0] x2[0] u[0]
x1[1] x2[1] u[1]

...
...

...
x1[`− 1] x2[`− 1] u[`− 1]


︸ ︷︷ ︸

D

a11 a21

a12 a22

b1 b2


︸ ︷︷ ︸

P

(19)

Finally, solving this as a single least squares problem gives us

P̂ =
(

D>D
)−1

D>S (20)
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2. Stability Examples and Counterexamples

(a) Consider the circuit below with R = 1 Ω, C = 0.5 F, and u(t) is some function bounded between
−K and K for some constant K ∈ R (for example K cos(t)). Furthermore assume that vC(0) = 0 V
(that the capacitor is initially discharged).

−
+u(t)

R

C

+

−

vC(t)

This circuit can be modeled by the differential equation

dvC(t)
dt

= −2vC(t) + 2u(t) (21)

Show that the differential equation is always stable (that is, as long as the input u(t) is
bounded, vC(t) also stays bounded). Consider what this means in the physical circuit. HINT:
You may want to use the triangle inequality, i.e. |a + b| ≤ |a|+ |b|, and the triangle inequality for in-
tegrals, i.e.

∣∣∣∫ b
a f (x)dx

∣∣∣ ≤ ∫ b
a | f (x)|dx. When we use |·| notation here, we will take this to mean the

magnitude, rather than the absolute value (since we can be dealing with complex numbers).

Solution: We can apply the integral solution for a nonhomogeneous differential equation to
demonstrate boundedness of the solution. The general solution to dx(t)

dt = λx(t)+ bu(t) is x(t) =
x0eλt +

∫ t
0 eλ(t−θ)bu(θ)dθ. Here, we can say that:

vC(t) = vC(0)e−2t +
∫ t

0
e−2(t−θ)2u(θ)dθ (22)

= vC(0)e−2t + 2
∫ t

0
e−2(t−θ)u(θ)dθ (23)

We wish to show |vC(t)| ≤ M for all t ≥ 0, where M ∈ R is some constant (this is another way
to say that something is “bounded”). We can take the absolute value around eq. (23) as follows:

|vC(t)| =
∣∣∣∣vC(0)e−2t + 2

∫ t

0
e−2(t−θ)u(θ)dθ

∣∣∣∣ (24)

≤
∣∣∣vC(0)e−2t

∣∣∣+ ∣∣∣∣2 ∫ t

0
e−2(t−θ)u(θ)dθ

∣∣∣∣ (25)

≤
∣∣∣vC(0)e−2t

∣∣∣+ 2
∫ t

0

∣∣∣e−2(t−θ)u(θ)
∣∣∣dθ (26)

= |vC(0)|e−2t + 2
∫ t

0
e−2(t−θ)|u(θ)|dθ (27)

where we use the traditional triangle inequality to obtain eq. (25) and the integral triangle in-
equality to obtain eq. (26). We know vC(0) = 0, so the first term is 0. Even if it is nonzero, we
may assume that it is some finite constant. Furthermore, 0 ≤ e−2t ≤ 1 for t ≥ 0 (it is a decay-
ing exponential). Hence, the |vC(0)|e−2t term is bounded. Next, we are allowed to assume that
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|u(t)| ≤ K from the statement of the problem. This will let us obtain

|vC(t)| ≤ 2
∫ t

0
e−2(t−θ) |u(θ)|︸ ︷︷ ︸

≤K

dθ (28)

≤ 2K
∫ t

0
e−2(t−θ) dθ (29)

= K
(

1− e−2t
)

(30)

Because e−2t ≥ 0, 1− e−2t ≤ 1. Hence, |vC(t)| ≤ K so vC(t) is bounded.

(b) (PRACTICE) Now, suppose that in the circuit of part 2.a we replaced the resistor with an induc-
tor as in fig. 1.

−
+u(t)

L

C

+

−

vC(t)

Figure 1: The original circuit with an inductor in place of the resistor.

Let L = 1 mH. Repeat part 2.a for the new circuit (with an inductor). Consider the following
process to arrive at the result:

i. Derive the system of differential equations using KCL, KVL, and NVA. Show that the

system is d
dt

[
vC(t)
iL(t)

]
=

[
0 1

C
− 1

L 0

] [
vC(t)
iL(t)

]
+

[
0
1
L

]
u(t) with the initial condition being[

vC(0)
iL(0)

]
=~0.

ii. Solve the matrix differential equation, using diagonalization if needed. Show that the
diagonalized system has a solution

~y(t) =

 1
2LC ej 1√

LC
t ∫ t

0 e−j 1√
LC

θu(θ)dθ

1
2LC e−j 1√

LC
t ∫ t

0 ej 1√
LC

θu(θ)dθ

 (31)

where ~y(t) = V−1

[
vC(t)
iL(t)

]
for change of basis matrix V. You may use the fact that the

eigenvalue, eigenvector pairs of

[
0 1

C
− 1

L 0

]
are

j 1√
LC

,

−j
√

L
C

1

 and

−j 1√
LC

,

j
√

L
C

1

.

iii. Apply a similar process from part 2.a to show that, if we have a bounded input u(t),
then the system can grow unboundedly. When showing that a system is unstable, it suf-
fices to choose a bounded u(t) that makes the system unbounded. We can choose u(t) =

2 cos
(

1√
LC

)
= ej 1√

LC
t
+ e−j 1√

LC
t 1. HINT: You may use the fact that iL(t) = y1(t) + y2(t).

1The natural frequency of this system is ωn = 1√
LC

. If we excite this system at a period equal to the natural frequency, we can make
it grow unboundedly. This is similar to pushing a swing at the same rate it swings, which makes it swing farther.
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Hint: You might find it useful to revisit the process of generating the state-space equations for vC(t) and
iL(t) as done in Note 4 for the LC Tank. The difference is that here, we have an input voltage.

Solution: 2.(b)i:
First, we begin forming the vector state-space equation, which involves relating vC(t) and iL(t)
to their derivatives and the input voltage.

C
dvC(t)

dt
= iC(t) = iL(t) (32)

=⇒ dvC(t)
dt

=
1
C

iL(t) (33)

L
diL(t)

dt
= vL(t) = u(t)− vC(t) (34)

=⇒ diL(t)
dt

=
1
L

vL(t) = −
1
L

vC(t) +
1
L

u(t) (35)

Combining this info, we find:

d
dt

[
vC(t)
iL(t)

]
=

[
0 1

C
− 1

L 0

]
︸ ︷︷ ︸

A

[
vC(t)
iL(t)

]
︸ ︷︷ ︸

~x(t)

+

[
0
1
L

]
︸︷︷︸
~b

u(t) (36)

2.(b)ii:
This is not a diagonal system, so we have to diagonalize it first. We start by solving for the
eigenvalues and eigenvectors of A:

λ1 = j
1√
LC

~v1 =

−j
√

L
C

1

 (37)

λ2 = −j
1√
LC

~v1 =

j
√

L
C

1

 (38)

Note that these eigenvalues are purely imaginary. This will be helpful later. Our change of basis

matrix is V =

−j
√

L
C j

√
L
C

1 1

, so we can define our change of basis as ~y(t) = V−1~x(t). Note

that the new diagonal system will be

d
dt
~y(t) =

j 1√
LC

0

0 −j 1√
LC

~y(t) + V−1~bu(t) (39)

=

j 1√
LC

0

0 −j 1√
LC

~y(t) +

−j

√
L
C j

√
L
C

1 1

−1 [
0
1
L

]u(t) (40)

=

j 1√
LC

0

0 −j 1√
LC

~y(t) + [ 1
2LC

1
2LC

]
u(t) (41)

so our system of equations is

d
dt

y1(t) = j
1√
LC

y1(t) +
1

2LC
u(t) (42)
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d
dt

y2(t) = −j
1√
LC

y2(t) +
1

2LC
u(t) (43)

(44)

Recall that ~x(0) = ~0, so ~y(t) = ~0 (where ~0 is a vector of all zeros). Solving this differential
equation now, we get

y1(t) = y1(0)︸ ︷︷ ︸
0

ej 1√
LC

t
+
∫ t

0
ej 1√

LC
(t−θ)

(
1

2LC
u(θ)

)
dθ (45)

y2(t) = y2(0)︸ ︷︷ ︸
0

e−j 1√
LC

t
+
∫ t

0
e−j 1√

LC
(t−θ)

(
1

2LC
u(θ)

)
dθ (46)

Simplifying and stacking the solutions in vector form,[
vC(t)
iL(t)

]
= ~x(t) = V

 1
2LC ej 1√

LC
t ∫ t

0 e−j 1√
LC

θu(θ)dθ

1
2LC e−j 1√

LC
t ∫ t

0 ej 1√
LC

θu(θ)dθ

 (47)

2.(b)iii:
We wish to show ~x(t) is unbounded, given some bounded input u(t). When showing a vector is
bounded, we can show that all of its individual, scalar entries are bounded. Alternatively, when
showing a vector is unbounded, it is enough to show that one of its entries will be unbounded.
Note that iL(t) = y1(t) + y2(t) (which we see by computing ~x(t) = V~y(t)). We can show that
this quantity is unbounded. Recall that

y1(t) =
ej 1√

LC
t

2LC

∫ t

0
e−j 1√

LC
θu(θ)dθ (48)

y2(t) =
e−j 1√

LC
t

2LC

∫ t

0
ej 1√

LC
θu(θ)dθ (49)

=⇒ iL(t) =
ej 1√

LC
t

2LC

∫ t

0
e−j 1√

LC
θu(θ)dθ +

e−j 1√
LC

t

2LC

∫ t

0
ej 1√

LC
θu(θ)dθ (50)

Now, we have to make some choice of a bounded input u(t) so the entire term is unbounded as

t → ∞. We can choose u(t) = e−j 1√
LC

t
+ ej 1√

LC
t
= 2 cos

(
1√
LC

t
)

which is a bounded sinusoidal
function. We can first compute iL(t) with this input:

iL(t) =
ej 1√

LC
t

2LC

∫ t

0
e−j 1√

LC
θ
(

e−j 1√
LC

θ
+ ej 1√

LC
θ
)

dθ +
e−j 1√

LC
t

2LC

∫ t

0
ej 1√

LC
θ
(

e−j 1√
LC

θ
+ ej 1√

LC
θ
)

dθ

(51)

=
ej 1√

LC
t

2LC

∫ t

0
1 + e−j 2√

LC
θ dθ +

e−j 1√
LC

t

2LC

∫ t

0
1 + ej 2√

LC
θ dθ (52)

=
ej 1√

LC
t

2LC

t +
1− e−j 2√

LC
t

j 2√
LC

+
e−j 1√

LC
t

2LC

t +
ej 2√

LC
t − 1

j 2√
LC

 (53)

=
t

LC

ej 1√
LC

t
+ e−j 1√

LC
t

2

+
1√
LC

ej 1√
LC

t − e−j 1√
LC

t

2j

 (54)
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=
t

LC
cos
(

t√
LC

)
+

1√
LC

sin
(

t√
LC

)
(55)

Notice that the cos and sin terms are bounded, but the cos term is multiplied by a t, so as t→ ∞,
iL(t) → ∞. Hence, the system is unstable. Generally, we say a system with eigenvalues having
negative real part implies stability. Here, the real part of the eigenvalues is 0, so the system is
unstable.

(c) Thus far, we have dealt with continuous systems so it also makes sense to consider discrete
systems. Consider the discrete system

x[i + 1] = 2x[i] + u[i] (56)

with x[0] = 0.

Is the system stable or unstable? If unstable, find a bounded input sequence u[i] that causes
the system to “blow up”.

Solution: Notice that, if we had the system

x[i + 1] = 2x[i] (57)

then we can write x[i + 1] = 2ix[1]. So, if we can somehow make x[1] nonzero using a bounded
input (e.g. equal to 1, for simplicity), then as i → ∞, x[i + 1] → ∞. We know that x[0] = 0, and
that x[1] = 2x[0] + u[0] = u[0]. Hence, we can set u[0] = 1 and then x[1] = 1. We have achieved
what we wanted, i.e. to make x[1] a nonzero value using the bounded input u[0] = 1. Now,
for the other timesteps i > 0, we can set u[i] = 0 since that would leave us with the system in
eq. (57). Written explicitly, our bounded input is

u[i] =

1 i = 0

0 i > 0
(58)
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