Fall 2022

1. Hambley P3.70

For the circuit in fig. 1, determine i(t), $v_L(t)$, v(t), the energy stored in the capacitance, the energy stored in the inductance, and the total stored energy, given that $v_C(t) = 40\cos(1000t)$ V. (The argument of the cosine function is in radians.)

Figure 1

Show that the total stored energy is constant with time. Comment on the results.

2. Hambley P4.34

Consider the circuit shown in fig. 2. The initial current for $i_L(0_-)=0$.

Figure 2: RL Circuit

Find expressions for $i_L(t)$ and v(t) for $t \ge 0$ and qualitatively sketch to scale versus time.

3. Hambley P5.85

Suppose you are given the following two terminal circuit in fig. 3.

Figure 3: Two Terminal Circuit

Find the Thevenin voltage, Thevenin impedance, and Norton current for the cirucit.

4. Hambley P6.57

The circuit shown fig. 4 has $R_1=R_2=2\,k\Omega$ and $C=\frac{1}{\pi}\,\mu F$.

Figure 4

Solve for the transfer function $H(f)=\frac{\mathbf{V}_{\mathrm{out}}}{\mathbf{V}_{\mathrm{in}}}$, calculate the half-power frequency, and analyze the magnitude and phase of H(f) as $f\to 0$ and $f\to \infty$.

5. Hambley P6.82

Consider the parallel resonant circuit shown in fig. 5.

Figure 5: Parallel Resonant Circuit

Determine the L and C values, given $R=2\,\mathrm{k}\Omega$, $f_0=8\,\mathrm{MHz}$, and $B=500\,\mathrm{kHz}$. Then draw a phasor diagram showing the currents through each of the elements in the circuit at resonance given that $I=10^{-3}\angle0^\circ$.