1. Hambley P3.70

For the circuit in fig. 1, determine $i(t), v_{L}(t), v(t)$, the energy stored in the capacitance, the energy stored in the inductance, and the total stored energy, given that $v_{C}(t)=40 \cos (1000 t) \mathrm{V}$. (The argument of the cosine function is in radians.)

Figure 1

Show that the total stored energy is constant with time. Comment on the results.

2. Hambley P4.34

Consider the circuit shown in fig. 2. The initial current for $i_{L}\left(0_{-}\right)=0$.

Figure 2: RL Circuit

Find expressions for $i_{L}(t)$ and $v(t)$ for $t \geq 0$ and qualitatively sketch to scale versus time.

3. Hambley P5.85

Suppose you are given the following two terminal circuit in fig. 3.

Figure 3: Two Terminal Circuit

Find the Thevenin voltage, Thevenin impedance, and Norton current for the cirucit.

4. Hambley P6.57

The circuit shown fig. 4 has $R_{1}=R_{2}=2 \mathrm{k} \Omega$ and $C=\frac{1}{\pi} \mu \mathrm{~F}$.

Figure 4

Solve for the transfer function $H(f)=\frac{\mathbf{V}_{\text {out }}}{\mathbf{V}_{\text {in }}}$, calculate the half-power frequency, and analyze the magnitude and phase of $H(f)$ as $f \rightarrow 0$ and $f \rightarrow \infty$.

5. Hambley P6.82

Consider the parallel resonant circuit shown in fig. 5.

Figure 5: Parallel Resonant Circuit

Determine the L and C values, given $R=2 \mathrm{k} \Omega, f_{0}=8 \mathrm{MHz}$, and $B=500 \mathrm{kHz}$. Then draw a phasor diagram showing the currents through each of the elements in the circuit at resonance given that $\mathbf{I}=10^{-3} \angle 0^{\circ}$.

