The following notes are useful for this discussion: Note 10 and Note 11.

1. Changing behavior through feedback

In this question, we discuss how *feedback control* can be used to change the effective behavior of a system.

(a) Consider the scalar system:

$$x[i+1] = 0.9x[i] + u[i] + w[i]$$
(1)

where u[i] is the control input we get to apply based on the current state and w[i] is the external disturbance, each at time *i*.

Is the system stable? If $|w[i]| \le \epsilon$, what can you say about |x[i]| at all times *i* if you further assume that u[i] = 0 and the initial condition x[0] = 0? How big can |x[i]| get?

Solution: The system is stable, as $\lambda = 0.9 \implies |\lambda| < 1$. We can say that |x[i]| is bounded at all time if the disturbance is bounded. Unrolling the system's recursion and extrapolating the general form,

$$x[0] = 0 \tag{2}$$

$$x[1] = w[0] \tag{3}$$

$$x[2] = 0.9w[0] + w[1] \tag{4}$$

$$x[3] = 0.9^2 w[0] + 0.9 w[1] + w[2]$$
(5)

$$x[i] = \sum_{k=0}^{i-1} 0.9^k w[i-k-1].$$
(7)

We can check that this form works by plugging it into our recursion:

$$x[i+1] = 0.9x[i] + w[i] = 0.9\left(\sum_{k=0}^{i-1} 0.9^k w[i-k-1]\right) + w[i]$$
(8)

$$=\sum_{k=0}^{i-1} 0.9^{k+1} w[i-k-1] + w[i] = \sum_{k=0}^{i} 0.9^k w[i-k]$$
(9)

which is exactly what our formula predicts. So,

$$|x[i]| = \left|\sum_{k=0}^{i-1} 0.9^k w[i-k-1]\right| \le \sum_{k=0}^{i-1} \left| 0.9^k w[i-k-1] \right| = \sum_{k=0}^{i-1} 0.9^k \epsilon.$$
(10)

In the limit as $i \to \infty$, by the geometric series formula,

$$|x[i]| \le \frac{\epsilon}{1 - 0.9} = 10\epsilon \tag{11}$$

(b) Suppose that we decide to choose a control law u[i] = fx[i] to apply in feedback. Given a specific λ, you want the system to behave like:

$$x[i+1] = \lambda x[i] + w[i]? \tag{12}$$

To do so, how would you pick *f*?

NOTE: In this case, w[i] can be thought of like another input to the system, except we can't control it.

Solution: We can control the system to have any value of λ , as long as we're not limited on the values of *f*.

$$x[i+1] = 0.9x[i] + fx[i] + w[i] = \lambda x[i] + w[i].$$
(13)

Fitting terms, $f = \lambda - 0.9$. Note we can get a $\lambda > 1$ if we so desire; there is nothing stopping us from putting arbitrarily big/small λ by the choice of f.

(c) For the previous part, which f would you choose to minimize how big |x[i]| can get? Solution: From eq. (12), in order to have the minimum bound on |x[i]|, $\lambda = 0$. To get this λ , f = -0.9. In the limit as $i \to \infty$ in this case,

$$|x[i]| \le \frac{\epsilon}{1-0} = \epsilon \tag{14}$$

The minimum bound on $|x(i)| = \epsilon$ is the same bound as on the disturbance.

(d) What if instead of a 0.9, we had a 3 in the original eq. (1). Would system stability change? Would our ability to control λ change?

Solution: If our system were now,

$$x[i+1] = 3x[i] + u[i] + w[i],$$
(15)

the system would no longer be stable. However, we can still choose any λ using closed loop feedback. In this case, $f = \lambda - 3$.

(e) Now suppose that we have a vector-valued system with a vector-valued control:

$$\vec{x}[i+1] = A\vec{x}[i] + B\vec{u}[i] + \vec{w}[i]$$
(16)

where we further assume that *B* is an invertible square matrix. Further, suppose we decide to apply linear feedback control using a square matrix *F* so we choose $\vec{u}[i] = F\vec{x}[i]$.

Given a specific *A*_{CL} we want the system to behave like:

$$\vec{x}[i+1] = A_{\rm CL}\vec{x}[i] + \vec{w}[i]?$$
(17)

How would you pick *F* given knowledge of *A*, *B* and the desired goal dynamics A_{CL} ? Will this work for any desired A_{CL} ?

Solution: Since in this case our input is the same rank as our output, we can arbitrarily choose the matrix A_{CL} . As long as *B* is invertible (as given), we can define:

$$\vec{x}[i+1] = A\vec{x}[i] + B\vec{u}[i] + \vec{w}[i]$$
(18)

$$= A\vec{x}[i] + BF\vec{x}[i] + \vec{w}[i]$$
(19)

$$= A\vec{x}[i] + BF\vec{x}[i] + \vec{w}[i]$$
(19)
= $(A + BF)\vec{x}[i] + \vec{w}[i]$ (20)

$$= A_{\rm CL}\vec{x}[i] + \vec{w}[i] \tag{21}$$

Therefore, matching terms,

$$A + BF = A_{\rm CL} \implies F = B^{-1}(A_{\rm CL} - A).$$
⁽²²⁾

2. Controlling states by designing sequences of inputs

Consider the following matrix, with a simple structure (what does it do when it acts on a vector?):

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_1 & a_2 & a_3 & a_4 \end{bmatrix} \qquad \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
(23)

Let's assume we have a *discrete-time* system defined as follows:

$$\vec{x}[i+1] = A\vec{x}[i] + \vec{b}u[i].$$
(24)

(a) Show that this system is controllable.

Solution: We have that $C = \begin{bmatrix} \vec{b} & A\vec{b} & A^2\vec{b} & A^3\vec{b} \end{bmatrix}$ where

$$\vec{b} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$
(25)

$$A\vec{b} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
(26)

$$A^{2}\vec{b} = \begin{bmatrix} 0\\1\\a_{4}\\a_{3}+a_{4}^{2} \end{bmatrix}$$
(27)

$$A^{3}\vec{b} = \begin{bmatrix} 1\\ a_{4}\\ a_{3} + a_{4}^{2}\\ a_{2} + 2a_{3}a_{4} + a_{4}^{3} \end{bmatrix}$$
(28)

Since each of these vectors have one less nonzero entry than the one above it, the vectors are all linearly independent and C is full rank. Hence, the system is controllable.

(b) Suppose that we would like to "place" the eigenvalues of A_{CL} (the closed loop A matrix) to be at 0.1, 0.2, 0.3, 0.4. That is, we would like to implement a feedback control law such that the eigenvalues of A_{CL} will be 0.1, 0.2, 0.3, 0.4, where our new system would be given by

 a_4

$$\vec{x}[i+1] = A_{CL}\vec{x}[i]$$
(29)

We define the characteristic polynomial of a matrix *M* to be

$$p_M(\lambda) = \det\{\lambda I - M\}$$
(30)

If we were to place the eigenvalues of A_{CL} at 0.1, 0.2, 0.3, 0.4, what will $p_{A_{CL}}(\lambda)$ be?

Solution: We know that 0.1, 0.2, 0.3, 0.4 will be roots of the polynomial det{ $\lambda I - A_{CL}$ } = $p_{A_{CL}}(\lambda)$. Hence, it is the case that we can write

$$p_{A_{CL}}(\lambda) = (\lambda - 0.1)(\lambda - 0.2)(\lambda - 0.3)(\lambda - 0.4)$$
(31)

$$=\lambda^4 - \lambda^3 + 0.35\lambda^2 - 0.05\lambda + 0.0024 \tag{32}$$

(c) Since *A* is in controllable canonical form (CCF), we know that the characteristic polynomial of the matrix will be

$$p_A(\lambda) = \det\{\lambda I - A\} = \lambda^4 - a_4\lambda^3 - a_3\lambda^2 - a_2\lambda - a_1$$
(33)

Given a feedback control law

$$\vec{u}[i] = \underbrace{\left[f_1 \quad f_2 \quad f_3 \quad f_4 \right]}_{F} \vec{x}[i] \tag{34}$$

determine the values of f_1 , f_2 , f_3 , f_4 in terms of a_1 , a_2 , a_3 , a_4 so that the eigenvalues of A_{CL} will be 0.1, 0.2, 0.3, 0.4.

Solution: When we apply the feedback control law, our closed loop matrix will be

$$A_{CL} = A + \vec{b}F$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a_1 & a_2 & a_3 & a_4 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ f_1 & f_2 & f_3 & f_4 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ a_1 + f_1 & a_2 + f_2 & a_3 + f_3 & a_4 + f_4 \end{bmatrix}$$

$$(35)$$

Here, the characteristic polynomial will be

$$p_{A_{CL}}(\lambda) = \lambda^4 - (a_4 + f_4)\lambda^3 - (a_3 + f_3)\lambda^2 - (a_2 + f_2)\lambda - (a_1 + f_1)$$
(38)

However, we want our characteristic polynomial to be as in eq. (32). To achieve this, we can pattern match coefficients of matching order in eq. (32) and eq. (38) to obtain

$$-(a_4 + f_4) = -1 \tag{39}$$

$$-(a_3 + f_3) = 0.35 \tag{40}$$

$$-(a_2 + f_2) = -0.05 \tag{41}$$

$$-(a_1 + f_1) = 0.0024 \tag{42}$$

Solving for f_1 , f_2 , f_3 , f_4 , we have

$$f_4 = 1 - a_4 \tag{43}$$

$$f_3 = -0.35 - a_3 \tag{44}$$

$$f_2 = 0.05 - a_2 \tag{45}$$

$$f_1 = -0.0024 - a_1 \tag{46}$$

so the feedback control law is

$$\vec{u}[i] = \begin{bmatrix} 1 - a_4 & -0.35 - a_3 & 0.05 - a_2 & -0.0024 - a_1 \end{bmatrix} \vec{x}[i]$$
(47)

Contributors:

- Neelesh Ramachandran.
- Anant Sahai.
- Regina Eckert.
- Kumar Krishna Agrawal.
- Anish Muthali.