The following notes are useful for this discussion: Note 10 and Note 11.

1. Changing behavior through feedback

In this question, we discuss how feedback control can be used to change the effective behavior of a system.
(a) Consider the scalar system:

$$
\begin{equation*}
x[i+1]=0.9 x[i]+u[i]+w[i] \tag{1}
\end{equation*}
$$

where $u[i]$ is the control input we get to apply based on the current state and $w[i]$ is the external disturbance, each at time i.
Is the system stable? If $|w[i]| \leq \epsilon$, what can you say about $|x[i]|$ at all times i if you further assume that $u[i]=0$ and the initial condition $x[0]=0$? How big can $|x[i]|$ get?
Solution: The system is stable, as $\lambda=0.9 \Longrightarrow|\lambda|<1$. We can say that $|x[i]|$ is bounded at all time if the disturbance is bounded. Unrolling the system's recursion and extrapolating the general form,

$$
\begin{align*}
x[0] & =0 \tag{2}\\
x[1] & =w[0] \tag{3}\\
x[2] & =0.9 w[0]+w[1] \tag{4}\\
x[3] & =0.9^{2} w[0]+0.9 w[1]+w[2] \tag{5}\\
& \tag{6}\\
x[i] & =\sum_{k=0}^{i-1} 0.9^{k} w[i-k-1] . \tag{7}
\end{align*}
$$

We can check that this form works by plugging it into our recursion:

$$
\begin{align*}
x[i+1] & =0.9 x[i]+w[i]=0.9\left(\sum_{k=0}^{i-1} 0.9^{k} w[i-k-1]\right)+w[i] \tag{8}\\
& =\sum_{k=0}^{i-1} 0.9^{k+1} w[i-k-1]+w[i]=\sum_{k=0}^{i} 0.9^{k} w[i-k] \tag{9}
\end{align*}
$$

which is exactly what our formula predicts. So,

$$
\begin{equation*}
|x[i]|=\left|\sum_{k=0}^{i-1} 0.9^{k} w[i-k-1]\right| \leq \sum_{k=0}^{i-1}\left|0.9^{k} w[i-k-1]\right|=\sum_{k=0}^{i-1} 0.9^{k} \epsilon \tag{10}
\end{equation*}
$$

In the limit as $i \rightarrow \infty$, by the geometric series formula,

$$
\begin{equation*}
|x[i]| \leq \frac{\epsilon}{1-0.9}=10 \epsilon \tag{11}
\end{equation*}
$$

(b) Suppose that we decide to choose a control law $u[i]=f x[i]$ to apply in feedback. Given a specific λ, you want the system to behave like:

$$
\begin{equation*}
x[i+1]=\lambda x[i]+w[i] ? \tag{12}
\end{equation*}
$$

To do so, how would you pick f ?

NOTE: In this case, $w[i]$ can be thought of like another input to the system, except we can't control it.
Solution: We can control the system to have any value of λ, as long as we're not limited on the values of f.

$$
\begin{equation*}
x[i+1]=0.9 x[i]+f x[i]+w[i]=\lambda x[i]+w[i] . \tag{13}
\end{equation*}
$$

Fitting terms, $f=\lambda-0.9$. Note we can get a $\lambda>1$ if we so desire; there is nothing stopping us from putting arbitrarily $\operatorname{big} / \operatorname{small} \lambda$ by the choice of f.
(c) For the previous part, which f would you choose to minimize how big $|x[i]|$ can get?

Solution: From eq. (12), in order to have the minimum bound on $|x[i]|, \lambda=0$. To get this λ, $f=-0.9$. In the limit as $i \rightarrow \infty$ in this case,

$$
\begin{equation*}
|x[i]| \leq \frac{\epsilon}{1-0}=\epsilon \tag{14}
\end{equation*}
$$

The minimum bound on $|x(i)|=\epsilon$ is the same bound as on the disturbance.
(d) What if instead of a 0.9 , we had a 3 in the original eq. (1). Would system stability change? Would our ability to control λ change?
Solution: If our system were now,

$$
\begin{equation*}
x[i+1]=3 x[i]+u[i]+w[i] \tag{15}
\end{equation*}
$$

the system would no longer be stable. However, we can still choose any λ using closed loop feedback. In this case, $f=\lambda-3$.
(e) Now suppose that we have a vector-valued system with a vector-valued control:

$$
\begin{equation*}
\vec{x}[i+1]=A \vec{x}[i]+B \vec{u}[i]+\vec{w}[i] \tag{16}
\end{equation*}
$$

where we further assume that B is an invertible square matrix. Futher, suppose we decide to apply linear feedback control using a square matrix F so we choose $\vec{u}[i]=F \vec{x}[i]$.
Given a specific A_{CL} we want the system to behave like:

$$
\begin{equation*}
\vec{x}[i+1]=A_{\mathrm{CL}} \vec{x}[i]+\vec{w}[i] ? \tag{17}
\end{equation*}
$$

How would you pick F given knowledge of A, B and the desired goal dynamics A_{CL} ? Will this work for any desired A_{CL} ?
Solution: Since in this case our input is the same rank as our output, we can arbitrarily choose the matrix A_{CL}. As long as B is invertible (as given), we can define:

$$
\begin{equation*}
\vec{x}[i+1]=A \vec{x}[i]+B \vec{u}[i]+\vec{w}[i] \tag{18}
\end{equation*}
$$

$$
\begin{align*}
& =A \vec{x}[i]+B F \vec{x}[i]+\vec{w}[i] \tag{19}\\
& =(A+B F) \vec{x}[i]+\vec{w}[i] \tag{20}\\
& =A_{\mathrm{CL}} \vec{x}[i]+\vec{w}[i] \tag{21}
\end{align*}
$$

Therefore, matching terms,

$$
\begin{equation*}
A+B F=A_{\mathrm{CL}} \Longrightarrow F=B^{-1}\left(A_{\mathrm{CL}}-A\right) \tag{22}
\end{equation*}
$$

2. Controlling states by designing sequences of inputs

Consider the following matrix, with a simple structure (what does it do when it acts on a vector?):

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{23}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let's assume we have a discrete-time system defined as follows:

$$
\begin{equation*}
\vec{x}[i+1]=A \vec{x}[i]+\vec{b} u[i] . \tag{24}
\end{equation*}
$$

(a) Show that this system is controllable.

Solution: We have that $\mathcal{C}=\left[\begin{array}{llll}\vec{b} & A \vec{b} & A^{2} \vec{b} & A^{3} \vec{b}\end{array}\right]$ where

$$
\begin{align*}
& \vec{b}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \tag{25}\\
& A \vec{b}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
a_{4}
\end{array}\right] \tag{26}\\
& A^{2} \vec{b}=\left[\begin{array}{c}
0 \\
1 \\
a_{4} \\
a_{3}+a_{4}^{2}
\end{array}\right] \tag{27}\\
& A^{3} \vec{b}=\left[\begin{array}{c}
1 \\
a_{4} \\
a_{3}+a_{4}^{2} \\
a_{2}+2 a_{3} a_{4}+a_{4}^{3}
\end{array}\right] \tag{28}
\end{align*}
$$

Since each of these vectors have one less nonzero entry than the one above it, the vectors are all linearly independent and \mathcal{C} is full rank. Hence, the system is controllable.
(b) Suppose that we would like to "place" the eigenvalues of $A_{C L}$ (the closed loop A matrix) to be at $0.1,0.2,0.3,0.4$. That is, we would like to implement a feedback control law such that the eigenvalues of $A_{C L}$ will be $0.1,0.2,0.3,0.4$, where our new system would be given by

$$
\begin{equation*}
\vec{x}[i+1]=A_{C L} \vec{x}[i] \tag{29}
\end{equation*}
$$

We define the characteristic polynomial of a matrix M to be

$$
\begin{equation*}
p_{M}(\lambda)=\operatorname{det}\{\lambda I-M\} \tag{30}
\end{equation*}
$$

If we were to place the eigenvalues of $A_{C L}$ at $0.1,0.2,0.3,0.4$, what will $p_{A_{C L}}(\lambda)$ be?

Solution: We know that $0.1,0.2,0.3,0.4$ will be roots of the polynomial $\operatorname{det}\left\{\lambda I-A_{C L}\right\}=p_{A_{C L}}(\lambda)$. Hence, it is the case that we can write

$$
\begin{align*}
p_{A_{C L}}(\lambda) & =(\lambda-0.1)(\lambda-0.2)(\lambda-0.3)(\lambda-0.4) \tag{31}\\
& =\lambda^{4}-\lambda^{3}+0.35 \lambda^{2}-0.05 \lambda+0.0024 \tag{32}
\end{align*}
$$

(c) Since A is in controllable canonical form (CCF), we know that the characteristic polynomial of the matrix will be

$$
\begin{equation*}
p_{A}(\lambda)=\operatorname{det}\{\lambda I-A\}=\lambda^{4}-a_{4} \lambda^{3}-a_{3} \lambda^{2}-a_{2} \lambda-a_{1} \tag{33}
\end{equation*}
$$

Given a feedback control law

$$
\vec{u}[i]=\underbrace{\left[\begin{array}{llll}
f_{1} & f_{2} & f_{3} & f_{4} \tag{34}
\end{array}\right]}_{F} \vec{x}[i]
$$

determine the values of $f_{1}, f_{2}, f_{3}, f_{4}$ in terms of $a_{1}, a_{2}, a_{3}, a_{4}$ so that the eigenvalues of $A_{C L}$ will be $0.1,0.2,0.3,0.4$.
Solution: When we apply the feedback control law, our closed loop matrix will be

$$
\begin{align*}
A_{C L} & =A+\vec{b} F \tag{35}\\
& =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}\right]+\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}\right] \tag{36}\\
& =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
a_{1}+f_{1} & a_{2}+f_{2} & a_{3}+f_{3} & a_{4}+f_{4}
\end{array}\right] \tag{37}
\end{align*}
$$

Here, the characteristic polynomial will be

$$
\begin{equation*}
p_{A_{C L}}(\lambda)=\lambda^{4}-\left(a_{4}+f_{4}\right) \lambda^{3}-\left(a_{3}+f_{3}\right) \lambda^{2}-\left(a_{2}+f_{2}\right) \lambda-\left(a_{1}+f_{1}\right) \tag{38}
\end{equation*}
$$

However, we want our characteristic polynomial to be as in eq. (32). To achieve this, we can pattern match coefficients of matching order in eq. (32) and eq. (38) to obtain

$$
\begin{align*}
& -\left(a_{4}+f_{4}\right)=-1 \tag{39}\\
& -\left(a_{3}+f_{3}\right)=0.35 \tag{40}\\
& -\left(a_{2}+f_{2}\right)=-0.05 \tag{41}\\
& -\left(a_{1}+f_{1}\right)=0.0024 \tag{42}
\end{align*}
$$

Solving for $f_{1}, f_{2}, f_{3}, f_{4}$, we have

$$
\begin{align*}
& f_{4}=1-a_{4} \tag{43}\\
& f_{3}=-0.35-a_{3} \tag{44}
\end{align*}
$$

$$
\begin{align*}
& f_{2}=0.05-a_{2} \tag{45}\\
& f_{1}=-0.0024-a_{1} \tag{46}
\end{align*}
$$

so the feedback control law is

$$
\vec{u}[i]=\left[\begin{array}{llll}
1-a_{4} & -0.35-a_{3} & 0.05-a_{2} & -0.0024-a_{1} \tag{47}
\end{array}\right] \vec{x}[i]
$$

Contributors:

- Neelesh Ramachandran.
- Anant Sahai.
- Regina Eckert.
- Kumar Krishna Agrawal.
- Anish Muthali.

