The following notes are useful for this discussion: Note 13.

1. Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a list of three linearly independent vectors $\left[\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right]$.
(a) Let's say we had two collections of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$. How can we prove that $\operatorname{Span}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\right)=\operatorname{Span}\left(\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}\right)$?
(b) Find unit vector \vec{q}_{1} such that $\operatorname{Span}\left(\left\{\vec{q}_{1}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}\right\}\right)$, where \vec{s}_{1} is nonzero.
(c) Let's say that we wanted to write

$$
\begin{equation*}
\vec{s}_{2}=c_{1} \vec{q}_{1}+\vec{z}_{2} \tag{1}
\end{equation*}
$$

where $c_{1} \vec{q}_{1}$ entirely represents the component of \vec{s}_{2} in the direction of \vec{q}_{1}, and \vec{z}_{2} represents the component of \vec{s}_{2} that is distinctly not in the direction of \vec{q}_{1} (i.e. \vec{z}_{2} and \vec{q}_{1} are orthogonal).
Given \vec{q}_{1} from the previous step, find c_{1} as in eq. (1), and use \vec{z}_{2} to find unit vector \vec{q}_{2} such that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$ and \vec{q}_{2} is orthogonal to \vec{q}_{1}. Show that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)=$ $\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$.
(d) What would happen if $\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}$ were not linearly independent, but rather \vec{s}_{1} were a multiple of \vec{s}_{2} ?
(e) Now given \vec{q}_{1} and \vec{q}_{2} in parts 1.b and 1.c, find $\vec{q}_{3} \operatorname{such}$ that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$, and \vec{q}_{3} is orthogonal to both \vec{q}_{1} and \vec{q}_{2}, and finally $\left\|\vec{q}_{3}\right\|=1$. You do not have to show that the two spans are equal.
(f) (PRACTICE) Confirm that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$.

2. Orthonormal Matrices and Projections

A matrix A has orthonormal columns, \vec{a}_{i}, if they are:

- Orthogonal (ie. $\left\langle\vec{a}_{i}, \vec{a}_{j}\right\rangle=\vec{a}_{j}^{\top} \vec{a}_{i}=0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to $1,\left\|\vec{a}_{i}\right\|=1$). This implies that $\left\|\vec{a}_{i}\right\|_{2}=\left\langle\vec{a}_{i}, \vec{a}_{i}\right\rangle=$ $\vec{a}_{i}^{\top} \vec{a}_{i}=1$.

Let's consider the following wide matrix $A \in \mathbb{R}^{3 \times 2}$:

$$
A=\frac{1}{3}\left[\begin{array}{cc}
1 & -2 \tag{2}\\
2 & -1 \\
2 & 2
\end{array}\right]
$$

(a) Show that the matrix A has orthonormal columns.
(b) Now, calculate $A^{\top} A$.
(c) Calculate $A A^{\top}$ and compare your results with the previous part.
(d) Again, suppose we are working with same A matrix. Suppose that we wanted to project $\vec{y}=$ $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ $\left[\begin{array}{c}0 \\ -1\end{array}\right]$ onto the subspace spanned by the columns of A. Show that the projection can be simplified to $A A^{\top} \vec{y}$ and then calculate the actual projection.
(e) (PRACTICE) Show if $A \in \mathbb{R}^{n \times n}$ is an orthonormal matrix then the columns, \vec{a}_{i}, form a basis for \mathbb{R}^{n}.

Contributors:

- Anish Muthali.
- Regina Eckert.
- Druv Pai.
- Neelesh Ramachandran.
- Oliver Yu.

