The following notes are useful for this discussion: Note 13.

1. Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a list of three linearly independent vectors $\left[\overrightarrow{\vec{r}}_{1}, \vec{s}_{2}, \vec{s}_{3}\right]$.
(a) Let's say we had two collections of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$. How can we prove that $\operatorname{Span}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\right)=\operatorname{Span}\left(\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}\right)$?
Solution: Notice that taking the span of some vectors gives you a set of vectors. So, when proving two sets S_{1} and S_{2} are equal, we can show that $S_{1} \subseteq S_{2}$ and $S_{2} \subseteq S_{1}$. We can show $S_{1} \subseteq S_{2}$ by showing that, if $a \in S_{1}$, then $a \in S_{2}$. Likewise, we can show $S_{2} \subseteq S_{1}$ by showing that, if $b \in S_{2}$, then $b \in S_{1}$.
In the context of the given problem, we can show that $\operatorname{Span}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\right)=\operatorname{Span}\left(\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}\right)$ by first showing $\operatorname{Span}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}\right)$. That is, we can show that $\vec{v}_{i} \in$ $\operatorname{Span}\left(\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}\right)$ for every $i=1$ to $i=n$. Next, we can show $\operatorname{Span}\left(\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\right)$ by showing that $\vec{w}_{i} \in \operatorname{Span}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}\right)$ for every $i=1$ to $i=n$.
(b) Find unit vector \vec{q}_{1} such that $\operatorname{Span}\left(\left\{\vec{a}_{1}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}\right\}\right)$, where \vec{s}_{1} is nonzero.

Solution: Note that any $\vec{v} \in \operatorname{Span}\left(\left\{\vec{s}_{1}\right\}\right)$ can be written as $\vec{v}=a \vec{s}_{1}$ for some $a \in \mathbb{R}$. We need $\vec{q}_{1} \in \operatorname{Span}\left(\left\{\vec{s}_{1}\right\}\right)$ and we need it to be a unit vector. Hence, we can write

$$
\begin{equation*}
\vec{q}_{1}=\frac{\vec{s}_{1}}{\left\|\vec{s}_{1}\right\|} . \tag{1}
\end{equation*}
$$

Next, we need to show $\vec{s}_{1} \in \operatorname{Span}\left(\left\{\vec{q}_{1}\right\}\right)$. We can see that $\vec{s}_{1}=a \vec{q}_{1}$ where $a=\left\|\vec{s}_{1}\right\|$.
(c) Let's say that we wanted to write

$$
\begin{equation*}
\vec{s}_{2}=c_{1} \vec{q}_{1}+\vec{z}_{2} \tag{2}
\end{equation*}
$$

where $c_{1} \vec{q}_{1}$ entirely represents the component of \vec{s}_{2} in the direction of \vec{q}_{1}, and \vec{z}_{2} represents the component of \vec{s}_{2} that is distinctly not in the direction of \vec{q}_{1} (i.e. \vec{z}_{2} and \vec{q}_{1} are orthogonal).
Given \vec{q}_{1} from the previous step, find c_{1} as in eq. (2), and use \vec{z}_{2} to find unit vector \vec{q}_{2} such that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$ and \vec{q}_{2} is orthogonal to \vec{q}_{1}. Show that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)=$ Span ($\left.\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$.
Solution: To find c_{1}, we can compute the projection of \vec{s}_{2} onto \vec{q}_{1}, namely

$$
\begin{equation*}
\operatorname{proj}_{\vec{q}_{1}}\left(\vec{s}_{2}\right)=\frac{\vec{q}_{1}^{\top} \vec{s}_{2}}{(\underbrace{\vec{q}_{1}^{\top} \vec{q}_{1}}_{1})} \vec{q}_{1}=\underbrace{\left(\vec{q}_{1}^{\top} \vec{s}_{2}\right)}_{c_{1}} \vec{q}_{1} \tag{3}
\end{equation*}
$$

This projection represents all the components of \vec{s}_{2} that are in the direction of \vec{q}_{1}. To find \vec{z}_{2}, we can use eq. (2) to obtain

$$
\begin{equation*}
\vec{z}_{2}=\vec{s}_{2}-\left(\vec{q}_{1}^{\top} \vec{s}_{2}\right) \vec{q}_{1} \tag{4}
\end{equation*}
$$

which, by design, is orthogonal to \vec{q}_{1} since it has no components in the direction of \vec{q}_{1}. We have satisfied the orthogonality condition with \vec{z}_{2}, so all that is left is to normalize this quantity to find $\vec{q}_{2}:$

$$
\begin{equation*}
\vec{q}_{2}=\frac{\vec{z}_{2}}{\left\|\vec{z}_{2}\right\|} \tag{5}
\end{equation*}
$$

Next, we need to show the two spans are equal. First, we can show $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$. From part 1.b, we already know $\vec{q}_{1} \in \operatorname{Span}\left(\left\{\vec{s}_{1}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$. We can rewrite \vec{q}_{2} as

$$
\begin{equation*}
\vec{q}_{2}=\alpha \vec{s}_{2}+\beta \vec{q}_{1} \tag{6}
\end{equation*}
$$

for $\alpha=\frac{1}{\left\|\vec{z}_{2}\right\|}$ and $\beta=\frac{-\left(\vec{q}_{1}^{\top} \vec{s}_{2}\right)}{\left\|\vec{z}_{2}\right\|}$. We know $\vec{q}_{1}=a \vec{s}_{1}$ for $a=\frac{1}{\left\|\vec{s}_{1}\right\|}$ (from part 1.b), so we can write

$$
\begin{equation*}
\vec{q}_{2}=\alpha \vec{s}_{2}+a \beta \vec{s}_{1} \tag{7}
\end{equation*}
$$

so $\vec{q}_{2} \in \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$.
Next, we can show $\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)$. From the 1.b, we know $\vec{s}_{1} \in \operatorname{Span}\left(\left\{\vec{q}_{1}\right\}\right) \subseteq$ $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)$. Now, we can perform algebraic manipulation and rewrite eq. (6) to say

$$
\begin{equation*}
\vec{s}_{2}=\frac{\vec{q}_{2}}{\alpha}-\frac{\beta \vec{q}_{1}}{\alpha} \tag{8}
\end{equation*}
$$

so $\vec{s}_{2} \in \operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)$. Hence, we have shown that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$.

Intuitive Explanation on Projections for Orthogonalization:
The idea behind why we take projections and calculate projection error can be seen as a method to extract \vec{z}_{2} from

$$
\begin{equation*}
\vec{s}_{2}=c_{1} \vec{q}_{1}+\vec{z}_{2} \tag{9}
\end{equation*}
$$

where we choose this decomposition of \vec{s}_{2} such that $c_{1} \vec{q}_{1}$ and \vec{z}_{2} are orthogonal. That is, we will use the term $c_{1} \vec{q}_{1}$ to represent the component of \vec{s}_{2} in the direction of \vec{q}_{1}, and \vec{z}_{2} to represent the component of \vec{s}_{2} that is distinctly not in the direction of \vec{q}_{1}. We can solve for c_{1} using projections. By subtracting this part out as in eq. (4), we are left with a vector \vec{z}_{2} that does not have any components in the direction of \vec{q}_{1}. Hence, it will be orthogonal to \vec{q}_{1}. See fig. 1 for an intuitive plot of what this decomposition could look like.

Figure 1: Decomposition of \vec{s}_{2}
(d) What would happen if $\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}$ were not linearly independent, but rather \vec{s}_{1} were a multiple of \vec{s}_{2} ?
Solution: If \vec{s}_{2} is a multiple of \vec{s}_{1}, then $\vec{z}_{2}=0$. This means that the projection of \vec{s}_{2} onto $\operatorname{Span}\left(\left\{\vec{s}_{1}\right\}\right)$ is just \vec{s}_{2}, so we have found an orthonormal basis for $\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right)$, in particular the basis $\left\{\vec{q}_{1}\right\}$. Hence, we can move onto \vec{s}_{3} and continue the algorithm from there.
(e) Now given \vec{q}_{1} and \vec{q}_{2} in parts 1.b and 1.c, find \vec{q}_{3} such that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$, and \vec{q}_{3} is orthogonal to both \vec{q}_{1} and \vec{q}_{2}, and finally $\left\|\vec{q}_{3}\right\|=1$. You do not have to show that the two spans are equal.
Solution: Based on the intuitive explanation from part 1.c, we would like to write

$$
\begin{equation*}
\vec{s}_{3}=c_{1} \vec{q}_{1}+c_{2} \vec{q}_{2}+\vec{z}_{3} \tag{10}
\end{equation*}
$$

where $c_{1} \vec{q}_{1}$ represents the component of \vec{s}_{3} that is in the direction of only $\vec{q}_{1}, c_{2} \vec{q}_{2}$ represents the component that is in the direction of only \vec{q}_{2}, and \vec{z}_{3} represents the component that is distinctly not in the directions of \vec{q}_{1} and \vec{q}_{2}. Note that \vec{q}_{1} and \vec{q}_{2} are in distinctly different directions, since they are orthogonal (this allows us to claim that $c_{1} \vec{q}_{1}$ and $c_{2} \vec{q}_{2}$ represent distinctly different directional components of \vec{s}_{3}).
We can compute c_{1} and c_{2} by projections. Namely,

$$
\begin{align*}
& c_{1} \vec{q}_{1}=\operatorname{proj}_{\vec{q}_{1}}\left(\vec{s}_{3}\right)=\frac{\vec{q}_{1}^{\top} \vec{s}_{3}}{\left\|\vec{q}_{1}\right\|^{2}} \vec{q}_{1}=\underbrace{\left(\vec{q}_{1}^{\top} \vec{s}_{3}\right)}_{c_{1}} \vec{q}_{1} \tag{11}\\
& c_{2} \vec{q}_{2}=\operatorname{proj}_{\vec{q}_{2}}\left(\vec{s}_{3}\right)=\frac{\vec{q}_{2}^{\top} \vec{s}_{3}}{\left\|\vec{q}_{2}\right\|^{2}} \vec{q}_{2}=\underbrace{\left(\vec{q}_{2}^{\top} \vec{s}_{3}\right)}_{c_{2}} \vec{q}_{2} \tag{12}
\end{align*}
$$

To find \vec{z}_{3}, we can subtract out $c_{1} \vec{q}_{1}$ and $c_{2} \vec{q}_{2}$, namely:

$$
\begin{equation*}
\vec{z}_{3}=\vec{s}_{3}-\left(\vec{q}_{1}^{\top} \vec{s}_{3}\right) \vec{q}_{1}-\left(\vec{q}_{2}^{\top} \vec{s}_{3}\right) \vec{q}_{2} \tag{13}
\end{equation*}
$$

All that is left is to normalize this quantity, that is

$$
\begin{equation*}
\vec{q}_{3}=\frac{\vec{z}_{3}}{\left\|\vec{z}_{3}\right\|} \tag{14}
\end{equation*}
$$

(f) (PRACTICE) Confirm that $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)=\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$.

Solution: We already showed that $\vec{q}_{1}, \vec{q}_{2} \in \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$ and also $\vec{s}_{1}, \vec{s}_{2} \in$ $\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)$. It remains to show that $\vec{q}_{3} \in \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$ (so we can $\left.\operatorname{show} \operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)\right)$ and that $\vec{s}_{3} \in \operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)$ (so we can show $\left.\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right) \subseteq \operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)\right)$
To show $\vec{q}_{3} \in \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$:

$$
\begin{align*}
\vec{q}_{3} & =\frac{\vec{z}_{3}}{\left\|\vec{z}_{3}\right\|}=\underbrace{\gamma}_{\frac{1}{\left\|z_{3}\right\|}}\left(\vec{s}_{3}-\left(\vec{s}_{3}^{\top} \vec{q}_{1}\right) \vec{q}_{1}-\left(\vec{s}_{3}^{\top} \vec{q}_{2}\right) \vec{q}_{2}\right) \tag{15}\\
& =\gamma(\vec{s}_{3}-\left(\vec{s}_{3}^{\top} \vec{q}_{1}\right) \underbrace{\vec{q}_{1}}_{a \vec{s}_{1}}-\left(\vec{s}_{3}^{\top} \vec{q}_{2}\right) \underbrace{\vec{q}_{2}}_{\alpha \vec{s}_{2}+a \beta \vec{s}_{1}}) \tag{16}\\
& =\gamma \vec{s}_{3}+\left(-\alpha\left(\vec{s}_{3}^{\top} \vec{q}_{2}\right)\right) \vec{s}_{2}+\left(-a\left(\vec{s}_{3}^{\top} \vec{q}_{1}\right)-a \beta\left(\vec{s}_{3}^{\top} \vec{q}_{2}\right)\right) \vec{s}_{1} \tag{17}
\end{align*}
$$

where $a=\frac{1}{\left\|\vec{s}_{1}\right\|}, \alpha=\frac{1}{\left\|\vec{z}_{2}\right\|}$, and $\beta=\frac{-\left(\vec{q}_{\top}^{\top} \vec{s}_{2}\right)}{\left\|\vec{z}_{2}\right\|}$ (taken from eq. (7)). So, $\vec{q}_{3} \in \operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)$. Now, to show $\vec{s}_{3} \in \operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)$, we can perform algebraic manipulation on eq. (16):

$$
\begin{equation*}
\vec{s}_{3}=\frac{1}{\gamma}\left(\vec{q}_{3}+\left(\vec{s}_{3}^{\top} \vec{q}_{1}\right) \vec{q}_{1}+\left(\vec{s}_{3}^{\top} \vec{q}_{2}\right) \vec{q}_{2}\right) \tag{18}
\end{equation*}
$$

so $\vec{s}_{3} \in \operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)$. Hence, we conclude that $\operatorname{Span}\left(\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}\right)=\operatorname{Span}\left(\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}\right)$.

2. Orthonormal Matrices and Projections

A matrix A has orthonormal columns, \vec{a}_{i}, if they are:

- Orthogonal (ie. $\left\langle\vec{a}_{i}, \vec{a}_{j}\right\rangle=\vec{a}_{j}^{\top} \vec{a}_{i}=0$ when $i \neq j$)
- Normalized (ie. vectors with length equal to $1,\left\|\vec{a}_{i}\right\|=1$). This implies that $\left\|\vec{a}_{i}\right\|_{2}=\left\langle\vec{a}_{i}, \vec{a}_{i}\right\rangle=$ $\vec{a}_{i}^{\top} \vec{a}_{i}=1$.

Let's consider the following wide matrix $A \in \mathbb{R}^{3 \times 2}$:

$$
A=\frac{1}{3}\left[\begin{array}{cc}
1 & -2 \tag{19}\\
2 & -1 \\
2 & 2
\end{array}\right]
$$

(a) Show that the matrix A has orthonormal columns.

Solution: We must show that the columns of A satisfy both of properties listed above. Checking the norm of our columns:

$$
\begin{align*}
& \left\|\vec{a}_{1}\right\|=\left\|\left[\begin{array}{l}
\frac{1}{3} \\
\frac{2}{3} \\
\frac{2}{3}
\end{array}\right]\right\|=\sqrt{\frac{1}{3}^{2}+\frac{2}{3}^{2}+\frac{2}{3}^{2}}=\sqrt{\frac{1}{9}+\frac{4}{9}+\frac{4}{9}}=\sqrt{1}=1 \tag{20}\\
& \left\|\overrightarrow{a_{2}}\right\|=\left\|\left[\begin{array}{c}
\frac{-2}{3} \\
\frac{-1}{3} \\
\frac{2}{3}
\end{array}\right]\right\|=\sqrt{\frac{-2^{2}}{3}+\frac{-1^{2}}{3}+\frac{2}{2}^{2}}=\sqrt{\frac{4}{9}+\frac{1}{9}+\frac{4}{9}}=\sqrt{1}=1 \tag{21}
\end{align*}
$$

Now, let's check that our columns are orthogonal:

$$
\begin{align*}
\left\langle\vec{a}_{1}, \overrightarrow{a_{2}}\right\rangle & ={\overrightarrow{a_{2}}}^{\top} \overrightarrow{a_{1}} \tag{22}\\
& =\frac{1}{3}\left[\begin{array}{lll}
-2 & -1 & 2
\end{array}\right] \frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right] \tag{23}\\
& =\frac{1}{9}(-2+-2+4) \tag{24}\\
& =0 \tag{25}
\end{align*}
$$

Thus our matrix A has orthogonal columns.
(b) Now, calculate $A^{\top} A$.

Solution:

$$
\begin{align*}
A^{\top} A & =\frac{1}{3}\left[\begin{array}{cc}
1 & -2 \\
2 & -1 \\
2 & 2
\end{array}\right]^{\top} \frac{1}{3}\left[\begin{array}{cc}
1 & -2 \\
2 & -1 \\
2 & 2
\end{array}\right] \tag{26}\\
& =\frac{1}{9}\left[\begin{array}{ccc}
1 & 2 & 2 \\
-2 & -1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
2 & -1 \\
2 & 2
\end{array}\right] \tag{27}
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{9}\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right] \tag{28}\\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{29}\\
& =I_{2 \times 2} \tag{30}
\end{align*}
$$

(c) Calculate $A A^{\top}$ and compare your results with the previous part. Solution:

$$
\begin{align*}
A A^{\top} & =\frac{1}{3}\left[\begin{array}{cc}
1 & -2 \\
2 & -1 \\
2 & 2
\end{array}\right] \frac{1}{3}\left[\begin{array}{cc}
1 & -2 \\
2 & -1 \\
2 & 2
\end{array}\right]^{\top} \tag{31}\\
& =\frac{1}{9}\left[\begin{array}{cc}
1 & -2 \\
2 & -1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 2 \\
-2 & -1 & 2
\end{array}\right] \tag{32}\\
& =\frac{1}{9}\left[\begin{array}{ccc}
5 & 4 & -2 \\
4 & 5 & 2 \\
-2 & 2 & 8
\end{array}\right] \tag{33}
\end{align*}
$$

Notice that this matrix is not full rank (since A only had a column rank of 2) and the third column can be seen as the second column minus the first column scaled by 2 . This shows that that if a tall matrix has orthonormal columns then $A^{\top} A=I_{m \times m}$ where m is the number of columns but $A A^{\top} \neq I_{n \times n}$ where n is the number of rows of the tall matrix.
(d) Again, suppose we are working with same A matrix. Suppose that we wanted to project $\vec{y}=$ $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ onto the subspace spanned by the columns of A. Show that the projection can be simplified to $A A^{\top} \vec{y}$ and then calculate the actual projection.
Solution: Recall from 16A, that in order to project onto the column space of a matrix we use the least squares formula. By applying this result, we have that

$$
\begin{equation*}
\operatorname{proj}_{\operatorname{Col}(A)}(\vec{y})=A \hat{\vec{x}}=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{y} \tag{34}
\end{equation*}
$$

Plugging in the result from part 2.b,

$$
\begin{align*}
\operatorname{proj}_{\operatorname{Col}(A)}(\vec{y}) & =A(\underbrace{A^{\top} A}_{I_{m \times m}})^{-1} A^{\top} \vec{y} \tag{35}\\
& =A A^{\top} \vec{y} \tag{36}
\end{align*}
$$

If we calculate the projection we get:

$$
\begin{equation*}
\operatorname{proj}_{\operatorname{Col}(A)}(\vec{y})=A A^{\top} \vec{y} \tag{37}
\end{equation*}
$$

$$
\begin{align*}
& =\frac{1}{9}\left[\begin{array}{ccc}
5 & 4 & -2 \\
4 & 5 & 2 \\
-2 & 2 & 8
\end{array}\right]\left[\begin{array}{c}
9 \\
0 \\
-9
\end{array}\right] \tag{38}\\
& =\left[\begin{array}{c}
7 \\
2 \\
-10
\end{array}\right] \tag{39}
\end{align*}
$$

(e) (PRACTICE) Show if $A \in \mathbb{R}^{n \times n}$ is an orthonormal matrix then the columns, \vec{a}_{i}, form a basis for \mathbb{R}^{n}.

Solution: Recall that, if we would like to show that a set of vectors are linearly independent, then the only β_{i} 's satisfying

$$
\begin{equation*}
\beta_{1} \vec{a}_{1}+\beta_{2} \vec{a}_{2}+\ldots+\beta_{n} \vec{a}_{n}=\overrightarrow{0} \tag{40}
\end{equation*}
$$

would be $\beta_{i}=0$ for $i=1$ to $i=n$. To show that $\beta_{i}=0$ for the given instance, we can left multiply eq. (40) by \vec{a}_{i}^{\top} (for any $i=1$ to $i=n$):

$$
\begin{align*}
\vec{a}_{i}^{\top}\left(\beta_{1} \vec{a}_{1}+\beta_{2} \vec{a}_{2}+\ldots+\beta_{n} \vec{a}_{n}\right) & =\vec{a}_{i}^{\top} \overrightarrow{0} \tag{41}\\
\sum_{j=1}^{n} \beta_{j} \vec{a}_{i}^{\top} \vec{a}_{j} & =0 \tag{42}\\
\beta_{i} \underbrace{\vec{a}_{i}^{\top} \vec{a}_{i}}_{1} & =0 \tag{43}\\
\Longrightarrow \beta_{i} & =0 \tag{44}
\end{align*}
$$

where we get to eq. (43) by using the fact that $\vec{a}_{i}^{\top} \vec{a}_{j}=0$ for $i \neq j$. Hence, $\beta_{i}=0$ for $i=1$ to $i=n$.

Contributors:

- Anish Muthali.
- Regina Eckert.
- Druv Pai.
- Neelesh Ramachandran.
- Oliver Yu.

