1. Orthonormality and Least Squares

Recall that, if $U \in \mathbb{R}^{m \times n}$ is a tall matrix (i.e. $m \geq n$) with orthonormal columns, then

$$
\begin{equation*}
U^{\top} U=I_{n \times n} \tag{1}
\end{equation*}
$$

However, it is not necessarily true that $U U^{\top}=I_{m \times m}$. In this discussion, we will deal with "orthonormal" matrices, where the term "orthonormal" refers to a matrix that is square with orthonormal columns and rows. Furthermore, for an orthonormal matrix U,

$$
\begin{equation*}
U^{\top} U=U U^{\top}=I_{n \times n} \Longrightarrow U^{-1}=U^{\top} \tag{2}
\end{equation*}
$$

This discussion will cover some useful properties that make orthonormal matrices favorable, and we will see a "nice" matrix factorization that leverages orthonormal matrices and helps us speed up least squares.
(a) Suppose you have a real, square, $n \times n$ orthonormal matrix U. You also have real vectors \vec{x}_{1}, \vec{x}_{2}, \vec{y}_{1}, \vec{y}_{2} such that

$$
\begin{align*}
& \vec{y}_{1}=U \vec{x}_{1} \tag{3}\\
& \vec{y}_{2}=U \vec{x}_{2} \tag{4}
\end{align*}
$$

This is analogous to a change of basis. Show that, in this new basis, the inner products are preserved. Calculate $\left\langle\vec{y}_{1}, \vec{y}_{2}\right\rangle=\vec{y}_{2}^{\top} \vec{y}_{1}=\vec{y}_{1}^{\top} \vec{y}_{2}$ in terms of $\left\langle\vec{x}_{1}, \vec{x}_{2}\right\rangle=\vec{x}_{2}^{\top} \vec{x}_{1}=\vec{x}_{1}^{\top} \vec{x}_{2}$.
(b) Using the change of basis defined in part 1.a, show that, in the new basis, the norms are preserved. Express $\left\|\vec{y}_{1}\right\|^{2}$ and $\left\|\vec{y}_{2}\right\|^{2}$ in terms of $\left\|\vec{x}_{1}\right\|^{2}$ and $\left\|\vec{x}_{2}\right\|^{2}$.
(c) Suppose you observe data coming from the model $y_{i}=\vec{a}^{\top} \vec{x}_{i}$, and you want to find the linear scale-parameters (each a_{i}). We are trying to learn the model \vec{a}. You have m data points $\left(\vec{x}_{i}, y_{i}\right)$, with each $\vec{x}_{i} \in \mathbb{R}^{n}$. Each \vec{x}_{i} is a different input vector that you take the inner product of with \vec{a}, giving a scalar y_{i}.
Set up a matrix-vector equation of the form $X \vec{a}=\vec{y}$ for some X and \vec{y}, and propose a way to estimate \vec{a}.
(d) Let's suppose that we can write our X matrix from part 1.c as

$$
\begin{equation*}
X=M V^{\top} \tag{5}
\end{equation*}
$$

for some matrix $M \in \mathbb{R}^{m \times n}$ and some orthonormal matrix $V \in \mathbb{R}^{n \times n}$. Find an expression for $\widehat{\vec{a}}$ from the previous part, in terms of M and V^{\top}.

Note: take this form as a given. We will go over how to find such a V and M later.
(e) Now suppose that we have the matrix

$$
\left[\begin{array}{c}
\vec{x}_{1}^{\top} \tag{6}\\
\vec{x}_{2}^{\top} \\
\vdots \\
\vec{x}_{m}^{\top}
\end{array}\right]:=X=U \Sigma V^{\top} .
$$

where $U \in \mathbb{R}^{m \times m}$ is an orthonormal matrix, and $V \in \mathbb{R}^{n \times n}$ is an orthonormal matrix. Here,
$\Sigma=\left[\begin{array}{cccc}\sigma_{1} & 0 & \ldots & 0 \\ 0 & \sigma_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \sigma_{n} \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right]$. Here we assume that we have more data points than the dimension of
our space (that is, $m>n$). Also, the transformation V in part e) is the same V in this factorized representation.
Set up a least squares formulation for estimating \vec{a} and find the solution to the least squares. Why might this factorization help us compute $\widehat{\vec{a}}$ faster?

Note: again, take this factorization as a given. We will go over how to find U, Σ, and V later.

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.
- Anant Sahai.
- Kumar Krishna Agrawal.

