
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Discussion 10B

1. Orthonormality and Least Squares

Recall that, if U ∈ Rm×n is a tall matrix (i.e. m ≥ n) with orthonormal columns, then

U>U = In×n (1)

However, it is not necessarily true that UU> = Im×m. In this discussion, we will deal with “or-
thonormal” matrices, where the term “orthonormal” refers to a matrix that is square with orthonor-
mal columns and rows. Furthermore, for an orthonormal matrix U,

U>U = UU> = In×n =⇒ U−1 = U> (2)

This discussion will cover some useful properties that make orthonormal matrices favorable, and we
will see a “nice” matrix factorization that leverages orthonormal matrices and helps us speed up least
squares.

(a) Suppose you have a real, square, n× n orthonormal matrix U. You also have real vectors ~x1, ~x2,
~y1, ~y2 such that

~y1 = U~x1 (3)

~y2 = U~x2 (4)

This is analogous to a change of basis. Show that, in this new basis, the inner products are
preserved. Calculate 〈~y1, ~y2〉 = ~y>2 ~y1 = ~y>1 ~y2 in terms of 〈~x1, ~x2〉 = ~x>2 ~x1 = ~x>1 ~x2.

Solution: Since we have defined the y vectors, we can substitute their expressions into ~y>2 ~y1:

〈~y1, ~y2〉 = ~y>2 ~y1 (5)

= (U~x2)
>U~x2 (6)

= ~x>2 U>U︸ ︷︷ ︸
In×n

~x1 (7)

= ~x>2 ~x1 (8)

= 〈~x1, ~x2〉 (9)

Note that in going from eq. (7) to eq. (8), we used eq. (2).

(b) Using the change of basis defined in part 1.a, show that, in the new basis, the norms are pre-
served. Express ‖~y1‖2 and ‖~y2‖2 in terms of ‖~x1‖2 and ‖~x2‖2.

Solution: Recall that we can write the norm squared as

‖~v‖2 = ~v>~v = 〈~v, ~v〉 (10)

We can directly use the method from part 1.a to show that

‖~yi‖2 = 〈~yi, ~yi〉 (11)
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= ~y>i ~yi (12)

= ~x>i U>U~xi (13)

= ~x>i ~xi (14)

= ‖~xi‖2 (15)

for i ∈ {1, 2}.
(c) Suppose you observe data coming from the model yi = ~a>~xi, and you want to find the linear

scale-parameters (each ai). We are trying to learn the model ~a. You have m data points (~xi, yi),
with each ~xi ∈ Rn. Each ~xi is a different input vector that you take the inner product of with~a,
giving a scalar yi.

Set up a matrix-vector equation of the form X~a = ~y for some X and ~y, and propose a way to
estimate~a.

Solution: Since y = ~a>~x means that y = ~x>~a, we can stack the equations with the following
definitions:

X :=


~x>1
~x>2

...
~x>m

 ~y :=


y1

y2
...

ym

 (16)

Then, we have ~y = X~a. Note that X ∈ Rm×n, and ~y ∈ Rm. We can estimate~a using least squares.
Applying the standard least squares formula, we can find our estimate ~̂a by computing

~̂a =
(

X>X
)−1

X>~y. (17)

(d) Let’s suppose that we can write our X matrix from part 1.c as

X = MV> (18)

for some matrix M ∈ Rm×n and some orthonormal matrix V ∈ Rn×n. Find an expression for ~̂a
from the previous part, in terms of M and V>.

Note: take this form as a given. We will go over how to find such a V and M later.

Solution: From the previous part, we have

~̂a =
(

X>X
)−1

X>~y. (19)

Plugging in X = MV>, we have

~̂a =

((
MV>

)>(
MV>

))−1(
MV>

)>
~y (20)

=
(

VM>MV>
)−1

VM>~y (21)

=
(

V>
)−1(

M>M
)−1

(V)−1VM>~y (22)

= V
(

M>M
)−1

M>~y (23)
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(e) Now suppose that we have the matrix
~x>1
~x>2

...
~x>m

 := X = UΣV>. (24)

where U ∈ Rm×m is an orthonormal matrix, and V ∈ Rn×n is an orthonormal matrix. Here,

Σ =



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


. Here we assume that we have more data points than the dimension of

our space (that is, m > n). Also, the transformation V in part e) is the same V in this factorized
representation.

Set up a least squares formulation for estimating~a and find the solution to the least squares.
Why might this factorization help us compute ~̂a faster?

Note: again, take this factorization as a given. We will go over how to find U, Σ, and V later.

Solution: From the previous part, we know

~̂a = V
(

M>M
)−1

M>~y (25)

Here, M = UΣ by pattern matching terms. Plugging this in,

~̂a = V
(
(UΣ)>(UΣ)

)−1
(UΣ)>~y (26)

= V
(

Σ>U>UΣ
)−1

Σ>U>~y (27)

= V
(

Σ>Σ
)−1

Σ>U>~y (28)

= V




σ1 0 . . . 0 0 · · · 0
0 σ2 . . . 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 . . . σn 0 · · · 0





σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0





−1

Σ>U>~y (29)

= V




σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
n



−1

Σ>U>~y (30)
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= V



1
σ2

1
0 . . . 0

0 1
σ2

2
. . . 0

...
...

. . .
...

0 0 . . . 1
σ2

n




σ1 0 . . . 0 0 · · · 0
0 σ2 . . . 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 . . . σn 0 · · · 0

U>~y (31)

= V


1
σ1

0 . . . 0 0 · · · 0

0 1
σ2

. . . 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1
σn

0 · · · 0

U>~y (32)

The nice part about this matrix factorization is that we can compute our least squares estimate
really quickly (owing to the diagonal nature of Σ>Σ), since inverting an arbitrarily large matrix
is computationally expensive. In particular, we only need to take the reciprocal of the diagonal
elements of Σ>Σ when computing the matrix inverse. Multiplying this with Σ> adds the extra~0
columns.
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