The following note is useful for this discussion: Note 16

1. Computing the SVD: A "Tall" Matrix Example

Define the matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \tag{1}\\
-2 & 2 \\
2 & -2
\end{array}\right]
$$

Here, we expect $U \in \mathbb{R}^{3 \times 3}, \Sigma \in \mathbb{R}^{3 \times 2}$, and $V \in \mathbb{R}^{2 \times 2}$ (recall that U and V must be square since they are orthonormal matrices).

In this problem, we will walk through the SVD algorithm, prove some important theorems about the SVD matrices and column/null spaces, and consider an alternate way to approach the SVD.
(a) Let's start by trying to write A as an outer product in the form of $\sigma \vec{u} \vec{v}^{\top}$ where both \vec{u} and \vec{v}^{\top} have unit norm. (HINT: Are the columns of A linearly independent or dependent? What does that tell us about how we can represent them?)
(b) In this part, we will walk through Algorithm 7 in Note 16. This algorithm applies for a general matrix $A \in \mathbb{R}^{m \times n}$.
i. Find $r:=\operatorname{rank}(A)$. Compute $A^{\top} A$ and diagonalize it using the spectral theorem (i.e. find V and Λ).
ii. Unpack $V:=\left[\begin{array}{ll}V_{r} & V_{n-r}\end{array}\right]$ and unpack $\Lambda:=\left[\begin{array}{cc}\Lambda_{r} & 0_{r \times(n-r)} \\ 0_{(n-r) \times r} & 0_{(n-r) \times(n-r)}\end{array}\right]$.
iii. Find $\Sigma_{r}:=\Lambda_{r}^{1 / 2}$ and then find $\Sigma:=\left[\begin{array}{cc}\Sigma_{r} & 0_{r \times(n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}\end{array}\right]$.
iv. Find $U_{r}:=A V_{r} \Sigma_{r}^{-1}$, where $U_{r} \in \mathbb{R}^{3 \times 1}$ and then extend the basis defined by columns of U_{r} to find $U \in \mathbb{R}^{3 \times 3}$.
(HINT: How can we extend a basis, and why is that needed here?)
v. Use the previous parts to write the full SVD of A.
vi. If we were to calculate the SVD of our matrix using a calculator, are we guaranteed to always get the same SVD? Why or why not?
(c) We now want to create the SVD of A^{\top}. What are the relationships between the matrices composing A and the matrices composing A^{\top} ?
(d) Show, for a general matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=r$ and $A=U \Sigma V^{\top}$, that $\operatorname{Null}(A)=$ $\operatorname{Col}\left(V_{n-r}\right)$. Then, find a basis for the null space of A in eq. (1). (HINT: How do we show two sets are equal? Try and use that approach here. Consider the outer product summation form for the SVD. Also, consider using the rank-nullity theorem that $\operatorname{dim} \operatorname{Col}(A)+\operatorname{dim} \operatorname{Null}(A)=n$.)
(e) Show, for a general matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=r$ and $A=U \Sigma V^{\top}$, that $\operatorname{Col}(A)=$ $\operatorname{Col}\left(U_{r}\right)$. Then, find a basis for the range (or column space) of A.
(f) (PRACTICE) Show, for a general matrix $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=r$ and $A=U \Sigma V^{\top}$, that $\operatorname{Null}\left(A^{\top}\right)=\operatorname{Col}\left(U_{m-r}\right)$ and $\operatorname{Col}\left(A^{\top}\right)=\operatorname{Col}\left(V_{r}\right)$. Then show:
i. $\operatorname{dim} \operatorname{Col}(A)+\operatorname{dim} \operatorname{Null}\left(A^{\top}\right)=n$,
ii. and $\operatorname{Col}(A)$ and $\operatorname{Null}\left(A^{\top}\right)$ are orthogonal.
(g) Suppose A was a wide matrix. Instead of finding $A^{\top} A$, we may want to find the SVD by computing $A A^{\top}$. The original Algorithm 7 from Note 16, in its entirety, is shown below:

```
Algorithm 1 Constructing the SVD
    function \(\operatorname{FULLSVD}\left(A \in \mathbb{R}^{m \times n}\right)\)
        \(r:=\operatorname{RaNK}(A)\)
        \((V, \Lambda):=\operatorname{DIAGONALIZE}\left(A^{\top} A\right) \quad \triangleright\) Sorted so that \(\Lambda_{11} \geq \cdots \geq \Lambda_{n n}\)
        Unpack \(V:=\left[\begin{array}{ll}V_{r} & V_{n-r}\end{array}\right]\)
        Unpack \(\Lambda:=\left[\begin{array}{cc}\Lambda_{r} & 0_{r \times(n-r)} \\ 0_{(n-r) \times r} & 0_{(n-r) \times(n-r)}\end{array}\right]\)
        \(\Sigma_{r}:=\Lambda_{r}^{1 / 2}\)
    7: \(\quad\) Pack \(\Sigma:=\left[\begin{array}{cc}\Sigma_{r} & 0_{r \times(n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}\end{array}\right]\)
        \(U_{r}:=A V_{r} \Sigma_{r}^{-1}\)
        \(U:=\operatorname{ExTENDBASIS}\left(U_{r}, \mathbb{R}^{m}\right)\)
        return \((U, \Sigma, V)\)
    end function
```

Write a modified version of Algorithm 7 where you solve for the SVD of A using $A A^{\top}$ instead of $A^{\top} A$. (HINT: Consider replacing every instance of " A " in $A^{\top} A$ with " A " . What happens? How can we use the result from the 1.c part?)

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Druv Pai.
- John Maidens.

