
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Discussion 11A

The following note is useful for this discussion: Note 16

1. Computing the SVD: A “Tall” Matrix Example

Define the matrix

A =

 1 −1
−2 2
2 −2

 . (1)

Here, we expect U ∈ R3×3, Σ ∈ R3×2, and V ∈ R2×2 (recall that U and V must be square since they
are orthonormal matrices).

In this problem, we will walk through the SVD algorithm, prove some important theorems about the
SVD matrices and column/null spaces, and consider an alternate way to approach the SVD.

(a) Let’s start by trying to write A as an outer product in the form of σ~u~v> where both ~u and ~v>

have unit norm. (HINT: Are the columns of A linearly independent or dependent? What does that tell
us about how we can represent them?)

Solution: Notice that the columns of A are linearly dependent meaning that they can be written
as some scalar multiple of the same vector. If we were to say that

A =
[
~a1 ~a2

]
(2)

then we can say that~a1 = α1~x and~a2 = α2~x. For our matrix A, we notice that both our columns
lie in the span of the vector:

~x =

 1
−2
2

 (3)

which means we can represent~a1 = 1~x and~a2 = −1~x. Stacking these together we get that A can
be represented as:

A = ~x
[
1 −1

]
=

 1
−2
2

 [1 −1
]

(4)

Now that we have A as an outer product we need to normalize our vectors which will get us:

A = 3


1
3
−2
3
2
3

√2
[

1√
2
− 1√

2

]
= 3
√

2


1
3
−2
3
2
3

 [ 1√
2
− 1√

2

]
(5)

where σ = 3
√

2,~u =


1
3
−2
3
2
3

 , and ~v> =
[

1√
2
− 1√

2

]
. This is the outer product form of our SVD!

We will now use the general algorithm to solve for the SVD of the same matrix.
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(b) In this part, we will walk through Algorithm 7 in Note 16. This algorithm applies for a general
matrix A ∈ Rm×n.

i. Find r := rank(A). Compute A>A and diagonalize it using the spectral theorem (i.e. find
V and Λ).

ii. Unpack V :=
[
Vr Vn−r

]
and unpack Λ :=

[
Λr 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

]
.

iii. Find Σr := Λ1/2
r and then find Σ :=

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
.

iv. Find Ur := AVrΣ−1
r , where Ur ∈ R3×1 and then extend the basis defined by columns of Ur

to find U ∈ R3×3.
(HINT: How can we extend a basis, and why is that needed here?)

v. Use the previous parts to write the full SVD of A.

vi. If we were to calculate the SVD of our matrix using a calculator, are we guaranteed to
always get the same SVD? Why or why not?

Solution: Part 1.(b)i
We can immediately see that the first column is a multiple of the second, so r = rank(A) = 1.
Next, we compute

A>A =

[
1 −2 2
−1 2 −2

]  1 −1
−2 2
2 −2

 (6)

=

[
9 −9
−9 9

]
(7)

The eigenvalues of A>A are the roots of (λ− 9)2 − 81 = 0, and therefore, λ1 = 18 and λ2 = 0.
The corresponding orthonormal eigenvectors are

~v1 =

− 1√
2

1√
2

 , ~v2 =

 1√
2

1√
2

 (8)

Hence,

V =

− 1√
2

1√
2

1√
2

1√
2

 (9)

Λ =

[
18 0
0 0

]
(10)

Note that the diagonal entries of Λ are sorted in decreasing order (i.e. Λ11 ≥ Λ22)

Part 1.(b)ii
Since r = 1, we know that Λr ∈ R1×1. To unpack it from our computation of Λ, we can pattern
match to see that

Λr =
[
18
]

(11)
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Next, we must find Vr and Vn−r. Here, Vr will contain the eigenvectors that correspond to the
nonzero eigenvalues, and Vn−r will contain all other eigenvectors. Thus,

Vr =

− 1√
2

1√
2

 (12)

Vn−r =

 1√
2

1√
2

 (13)

Part 1.(b)iii
When raising a diagonal matrix to the power 1

2 , we can take the square root of all the diagonal
elements. Hence,

Σr = Λ1/2
r =

[
3
√

2
]

(14)

Now, recall that Σ ∈ R3×2. Hence, we can pattern match to the form given in part 1.(b)iii to
obtain

Σ =

3
√

2 0
0 0
0 0

 (15)

Part 1.(b)iv
Plugging in the given formula to find Ur, we obtain:

Ur = AVrΣ−1
r =

−
1
3

2
3
− 2

3

 (16)

To find U, we must extend the basis formed by the column space of Ur using Gram-Schmidt.
This allows us to find two more orthonormal vectors that we can stack in the columns of U to
give us an orthonormal matrix. We can do Gram-Schmidt using Python to get

~u2 =


√

8
3
1

3
√

2
− 1

3
√

2

 ~u3 =


0
1√
2

1√
2

 (17)

Hence,

U =
[
Ur ~u2 ~u3

]
=


− 1

3

√
8

3 0
2
3

1
3
√

2
1√
2

− 2
3 − 1

3
√

2
1√
2

 (18)

Part 1.(b)v
Finally, we compose this information, and write that A can be decomposed as:

A = 3
√

2

−
1
3

2
3
− 2

3

 [− 1√
2

1√
2

]
︸ ︷︷ ︸

compact SVD

=


− 1

3

√
8

3 0
2
3

1
3
√

2
1√
2

− 2
3 − 1

3
√

2
1√
2


3
√

2 0
0 0
0 0


− 1√

2
1√
2

1√
2

1√
2


︸ ︷︷ ︸

full SVD

. (19)
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The full SVD representation of A is given below. Note that the full SVD and compact SVD rep-
resent the same matrix; the compact form merely omits the columns/rows of U or V which will
hit the zero entries of Σ.

Part 1.(b)vi
The SVD that a calculator outputs might be different because of the non-uniqueness of Gram-
Schmidt. We can extend a given set of vectors to an orthonormal basis in an infinite number of
ways, so the SVD is not unique. Furthermore, it is important to note that the extended columns
of U only ever multiply with the zero-entries of Σ. So, they cannot impact the final result of A.
However, it is still critical that all the columns of U are in fact mutually orthogonal and normal-
ized.

(c) We now want to create the SVD of A>. What are the relationships between the matrices com-
posing A and the matrices composing A>?

Solution: We know that A has an SVD representation of UΣV> as we solved for above. One
natural approach to solving for the SVD of A> is to take the transpose of the SVD terms, and
“reassign variables”. That is, we can say that A> has SVD ŨΣ̃Ṽ> and pattern match to U, Σ, V
from before:

A> =
(

UΣV>
)>

= VΣ>U> (20)

Now, pattern-matching, we can say that Ũ = V, Σ̃ = Σ>, Ṽ> = U> =⇒ Ṽ = U. Note how the
roles have exchanged, and Σ is transposed.

We can write now write the full SVD of A> (feel free to confirm that the multiplication yields the
right result):

A> =

− 1√
2

1√
2

1√
2

1√
2

 [3
√

2 0 0
0 0 0

] 
− 1

3
2
3 − 2

3√
8

3
1

3
√

2
− 1

3
√

2
0 1√

2
1√
2

 (21)

(d) Show, for a general matrix A ∈ Rm×n with rank(A) = r and A = UΣV>, that Null(A) =

Col(Vn−r). Then, find a basis for the null space of A in eq. (1). (HINT: How do we show two sets
are equal? Try and use that approach here. Consider the outer product summation form for the SVD. Also,
consider using the rank-nullity theorem that dim Col(A) + dim Null(A) = n.)

Solution: Null(A) ⊆ Col(Vn−r)

We can start by writing the SVD of A in outer product form:

A =
r

∑
i=1

σi~ui~v>i (22)

Let us say that we want a (nonzero) vector ~x such that A~x =~0. This means that

A~x =
r

∑
i=1

σi~ui~v>i ~x (23)

Here, we require ~v>i ~x = 0 for i = 1 to r. Hence, ~x must be orthogonal to ~vi for i = 1 to r,
since each σi 6= 0 and ~ui are linearly independent. This means that ~x ∈ Col(Vn−r). Since ~x is
an arbitrary null space vector of A by construction, it must be the case that Null(A) ⊆ Col(Vn−r).
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Having shown this, we can use rank-nullity theorem to see that dim Null(A) = n − r since
rank(A) = r. Hence, dim Null(A) = dim Col(Vn−r) and Null(A) = Col(Vn−r). If you want to
go further, you can show the other direction as well:

Null(A) ⊇ Col(Vn−r) (Optional)
If we had an arbitrary ~̃v ∈ Col(Vn−r), it must be orthogonal to each of ~vi for i = 1 to r. Hence,

A~̃v =
r

∑
i=1

σi~ui ~v>i ~̃v︸︷︷︸
=0

=~0 (24)

Thus, ~̃v ∈ Null(A) and Null(A) ⊇ Col(Vn−r).

This completes the proof that Null(A) = Col(Vn−r).

Applying the result above to the A in eq. (1):

Null(A) = Span

({[
1/
√

2
1/
√

2

]})
(25)

(e) Show, for a general matrix A ∈ Rm×n with rank(A) = r and A = UΣV>, that Col(A) =

Col(Ur). Then, find a basis for the range (or column space) of A.

Solution: Col(A) ⊆ Col(Ur)

We can again start by writing the SVD of A in outer product form:

A =
r

∑
i=1

σi~ui~v>i (26)

We know that Col(A) := {~b : A~x =~b}. Hence, if we multiply A by ~x:

A~x =
r

∑
i=1

σi~ui~v>i ~x (27)

=
r

∑
i=1

σi~ui

(
~v>i ~x

)
(28)

=
r

∑
i=1

(
~v>i ~x

)
σi~ui (29)

which is a linear combination of ~u1, . . . ,~ur. Hence, A~x ∈ Col(Ur) and so Col(A) ⊆ Col(Ur).

Having shown this, we can see that dim Col(A) = dim Col(Ur) = r, so it must be the case that
Col(A) = Col(Ur). If you want to go further, you can show the other direction as well:

Col(A) ⊇ Col(Ur) (Optional)
Suppose~b ∈ Col(Ur), so Ur~x =~b for some vector ~x. We can show that~b ∈ Col(A). First, we can
consider the compact SVD form of A:

A = UrΣrV>r (30)
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where Σr ∈ Rr×r is diagonal. Now, we can define the vector ~̃x = VrΣ−1
r ~x. Notice that

A~̃x = UrΣrV>r ~̃x (31)

= UrΣrV>r VrΣ−1
r ~x (32)

= Ur~x =~b (33)

so~b ∈ Col(A), and thus, Col(A) ⊇ Col(Ur).

This completes the proof that Col(A) = Col(Ur).

In this specific case for the matrix A in eq. (1):

Col(A) = Span



−1/3

2/3
−2/3



 (34)

(f) (PRACTICE) Show, for a general matrix A ∈ Rm×n with rank(A) = r and A = UΣV>, that
Null

(
A>
)
= Col(Um−r) and Col

(
A>
)
= Col(Vr). Then show:

i. dim Col(A) + dim Null
(

A>
)
= n,

ii. and Col(A) and Null
(

A>
)

are orthogonal.

Solution: Combining the results from the previous parts and using the notation from part 1.c,
we know Null

(
A>
)
= Col

(
Ṽm−r

)
= Col(Um−r) and Col

(
A>
)
= Col

(
Ũr

)
= Col(Vr).

We know that m = dim Col(Ur)+dim Col(Um−r) = dim Col(A)+dim Null
(

A>
)
. Since Col(A) =

Col(Ur) and Null
(

A>
)
= Col(Um−r), Col(A) and Null

(
A>
)

must be orthogonal since all the
columns of Ur and all the columns of Um−r are orthogonal.

(g) Suppose A was a wide matrix. Instead of finding A>A, we may want to find the SVD by com-
puting AA>. The original Algorithm 7 from Note 16, in its entirety, is shown below:

Algorithm 1 Constructing the SVD

1: function FULLSVD(A ∈ Rm×n)
2: r := RANK(A)

3: (V, Λ) := DIAGONALIZE(A>A) . Sorted so that Λ11 ≥ · · · ≥ Λnn

4: Unpack V :=
[
Vr Vn−r

]
5: Unpack Λ :=

[
Λr 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)

]
6: Σr := Λ1/2

r

7: Pack Σ :=

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
8: Ur := AVrΣ−1

r

9: U := EXTENDBASIS(Ur, Rm)

10: return (U, Σ, V)

11: end function
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Write a modified version of Algorithm 7 where you solve for the SVD of A using AA> instead
of A>A. (HINT: Consider replacing every instance of “A” in A>A with “A>”. What happens? How
can we use the result from the 1.c part?)

Solution:

Algorithm 2 Constructing the SVD

1: function FULLSVD(A ∈ Rm×n)
2: r := RANK(A)

3: (U, Λ) := DIAGONALIZE(AA>) . Sorted so that Λ11 ≥ · · · ≥ Λnn

4: Unpack U :=
[
Ur Um−r

]
5: Unpack Λ :=

[
Λr 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)

]
6: Σr := Λ1/2

r

7: Pack Σ :=

[
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
8: Vr := A>UrΣ−1

r

9: V := EXTENDBASIS(Vr, Rn)

10: return (U, Σ, V)

11: end function
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