The following notes are useful for this discussion: Note 16

1. Geometric Interpretation of the SVD

(a) When we plot the transformation given by a specific matrix, we think about how the matrix transforms the standard basis vectors. In 2D, let $\vec{e}_{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{e}_{y}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. The vectors \vec{e}_{x} and \vec{e}_{y} are shown below

Consider the following matrix

$$
A=\left[\begin{array}{cc}
-1 & 0 \tag{1}\\
0 & 2
\end{array}\right]
$$

How would A transform \vec{e}_{x} and \vec{e}_{y} ? Plot the result.
(b) Let's take a look at a special 2×2 matrix.

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \tag{2}\\
\sin \theta & \cos \theta
\end{array}\right]
$$

Show that this matrix is orthonormal. This matrix is called a rotation matrix and will rotate any vector counterclockwise by θ degrees.
(c) Now let's consider how this transformation looks in the lens of the SVD. You are given the following matrix A :

$$
A=\left[\begin{array}{cc}
-1 & -2 \tag{3}\\
2 & 1
\end{array}\right]
$$

Recall that the SVD of this matrix is given by $A=U \Sigma V^{\top}$. Assume you are told that

$$
V=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \tag{4}\\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

We will try to deduce U and Σ graphically, and the confirm our results numerically. Plot the transformation given by V by showing how it affects \vec{e}_{x} and \vec{e}_{y} via left multiplication. (HINT: Try writing V as a rotation matrix with a specific θ.)
(d) Suppose you are told that the transformation of $A V$ on \vec{e}_{x} and \vec{e}_{y} looks like

Write this transformation $A V$ in terms of U and Σ. Recall that the U matrix is an orthonormal matrix so it will correspond to any rotations or reflections, and the Σ matrix is a diagonal matrix and will perform any scaling operations. Based on this fact and the plot of the transformation above, write down a guess for what U and Σ might be.
(e) Based on the given V matrix, compute the SVD. Does your answer match your hypothesis from
the previous part?
(f) Using your answer for U and Σ from the previous part, plot the transformation of Σ on \vec{e}_{x} and \vec{e}_{y}. From here, plot the transformation of $U \Sigma$ on \vec{e}_{x} and \vec{e}_{y}. Does the final plot resemble the transformation shown by $A V$?

Contributors:

- Neelesh Ramachandran.
- Lynn Chua.
- Shane Barratt.
- Kuan-Yun Lee.
- Anant Sahai.
- Kareem Ahmad.
- Oliver Yu.
- Anish Muthali.

