The following notes are useful for this discussion: Note 16

1. Geometric Interpretation of the SVD

(a) When we plot the transformation given by a specific matrix, we think about how the matrix transforms the standard basis vectors. In 2D, let $\vec{e}_{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{e}_{y}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. The vectors \vec{e}_{x} and \vec{e}_{y} are shown below

Consider the following matrix

$$
A=\left[\begin{array}{cc}
-1 & 0 \tag{1}\\
0 & 2
\end{array}\right]
$$

How would A transform \vec{e}_{x} and \vec{e}_{y} ? Plot the result.
Solution: We have that $A \vec{e}_{x}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ and $A \vec{e}_{y}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$. Plotting these, we have

(b) Let's take a look at a special 2×2 matrix.

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \tag{2}\\
\sin \theta & \cos \theta
\end{array}\right]
$$

Show that this matrix is orthonormal. This matrix is called a rotation matrix and will rotate any vector counterclockwise by θ degrees.
Solution: We can also show orthonormality by showing that the columns have unit norm and that they are orthogonal. We can also show that this matrix is orthonormal by showing that $R R^{\top}=I_{2 \times 2}$ and $R^{\top} R=I_{2 \times 2}$.

$$
\begin{align*}
\left\|\overrightarrow{r_{1}}\right\| & =\left\|\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]\right\|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1 \tag{3}\\
\left\|\overrightarrow{r_{2}}\right\| & =\left\|\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]\right\|=\sqrt{\sin ^{2} \theta+\cos ^{2} \theta}=1 \tag{4}\\
\left\langle\overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right\rangle & =[-\sin \theta \quad \cos \theta]\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]=-\cos \theta \sin \theta+\cos \theta \sin \theta=0 \tag{5}
\end{align*}
$$

(c) Now let's consider how this transformation looks in the lens of the SVD. You are given the following matrix A :

$$
A=\left[\begin{array}{cc}
-1 & -2 \tag{6}\\
2 & 1
\end{array}\right]
$$

Recall that the SVD of this matrix is given by $A=U \Sigma V^{\top}$. Assume you are told that

$$
V=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \tag{7}\\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

We will try to deduce U and Σ graphically, and the confirm our results numerically. Plot the transformation given by V by showing how it affects \vec{e}_{x} and \vec{e}_{y} via left multiplication. (HINT: Try writing V as a rotation matrix with a specific θ.)
Solution: We notice that V is a rotation matrix with $\theta=45^{\circ}$. Hence, it will rotate \vec{e}_{x} and \vec{e}_{y} by 45° counterclockwise.

(d) Suppose you are told that the transformation of $A V$ on \vec{e}_{x} and \vec{e}_{y} looks like

Write this transformation $A V$ in terms of U and Σ. Recall that the U matrix is an orthonormal
matrix so it will correspond to any rotations or reflections, and the Σ matrix is a diagonal matrix and will perform any scaling operations. Based on this fact and the plot of the transformation above, write down a guess for what U and Σ might be.

Solution: We notice that $A V=U \Sigma$ by right multiplying our SVD by V. Now, it is reasonable to assume that, since $A V \vec{e}_{x}$ appears 3 times as long as $A V \vec{e}_{y}$, then $\Sigma=\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]$. Furthermore, it appears as if the vectors have been rotated by 135° so it is likely that U is a rotation matrix with $\theta=135^{\circ}$, i.e., $U=\left[\begin{array}{cc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$.
(e) Based on the given V matrix, compute the SVD. Does your answer match your hypothesis from the previous part?
Solution: We can compute Σ and U as follows:

$$
\begin{align*}
& A \vec{v}_{1}=\sigma_{1} \vec{u}_{1} \tag{8}\\
& A \vec{v}_{2}=\sigma_{2} \vec{u}_{2} \tag{9}
\end{align*}
$$

More explicitly,

$$
\begin{align*}
& A \vec{v}_{1}=\left[\begin{array}{cc}
-1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{\sqrt{2}} \\
\frac{3}{\sqrt{2}}
\end{array}\right] \tag{10}\\
& A \vec{v}_{2}=\left[\begin{array}{cc}
-1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
-\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right] \tag{11}
\end{align*}
$$

We can set $\sigma_{1}=\left\|A \vec{v}_{1}\right\|=3$ and $\sigma_{2}=\left\|A \vec{v}_{2}\right\|=1$. These choices yield $\vec{u}_{1}=\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ and $\vec{u}_{2}=\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right]$. Hence,

$$
\begin{align*}
& \Sigma=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right] \tag{12}\\
& U=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] \tag{13}
\end{align*}
$$

We notice that U is a rotation matrix with $\theta=135^{\circ}$, and indeed, this matches with the U and Σ we hypothesized in the previous part.
(f) Using your answer for U and Σ from the previous part, plot the transformation of Σ on \vec{e}_{x} and \vec{e}_{y}. From here, plot the transformation of $U \Sigma$ on \vec{e}_{x} and \vec{e}_{y}. Does the final plot resemble the transformation shown by $A V$?
Solution: We notice that $\Sigma \vec{e}_{x}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $\Sigma \vec{e}_{y}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Hence, we get the following plot:

Now, we noticed that U is a rotation matrix with $\theta=135^{\circ}$ so this will rotate the graph above by 135°. This yields

which exactly matches what was given above.

Contributors:

- Neelesh Ramachandran.
- Lynn Chua.
- Shane Barratt.
- Kuan-Yun Lee.
- Anant Sahai.
- Kareem Ahmad.
- Oliver Yu.
- Anish Muthali.

