The following note is useful for this discussion: Note 18.

1. Linear Approximation

A common way to approximate a nonlinear function is to perform linearization near a point. In the case of a one-dimensional function $f(x)$, the linear approximation of $f(x)$ at a point x_{\star} is given by

$$
\begin{equation*}
\widehat{f}\left(x ; x_{\star}\right)=f\left(x_{\star}\right)+f^{\prime}\left(x_{\star}\right) \cdot\left(x-x_{\star}\right) \tag{1}
\end{equation*}
$$

where $f^{\prime}\left(x_{\star}\right):=\frac{\mathrm{d} f}{\mathrm{~d} x}\left(x_{\star}\right)$ is the derivative of $f(x)$ at $x=x_{\star}$.
Keep in mind that wherever we see x_{\star}, this denotes a constant value or operating point.
We can evaluate the accuracy of our approximation by calculating the approximation error, namely $\left|f(x)-\widehat{f}\left(x ; x_{\star}\right)\right|$.
Suppose we have the single-variable function $f(x)=x^{3}-3 x^{2}$. We can plot the function $f(x)$ as follows:

Figure 1: Plot of $f(x)=x^{3}-3 x^{2}$
(a) Write the linear approximation of the function around an arbitrary point x_{\star}.
(b) Using the expression above, linearize the function around the point $x_{\star}=1.5$. Draw the linearization into the plot in fig. 1. Then evaluate the accuracy of the linear approximation at $x=1.7$ and $x=2.5$. Does the difference in accuracy make sense, based on the plot?

Now, we can extend this to higher dimensional functions. In the case of a two-dimensional function $f(x, y)$, the linear approximation of $f(x, y)$ at a point $\left(x_{\star}, y_{\star}\right)$ is given by

$$
\begin{equation*}
\widehat{f}\left(x, y ; x_{\star}, y_{\star}\right)=f\left(x_{\star}, y_{\star}\right)+\frac{\partial f}{\partial x}\left(x_{\star}, y_{\star}\right) \cdot\left(x-x_{\star}\right)+\frac{\partial f}{\partial y}\left(x_{\star}, y_{\star}\right) \cdot\left(y-y_{\star}\right) \tag{2}
\end{equation*}
$$

where $\frac{\partial f}{\partial x}\left(x_{\star}, y_{\star}\right)$ is the partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{\star}, y_{\star}\right)$, and similarly for $\frac{\partial f}{\partial y}\left(x_{\star}, y_{\star}\right)$
(c) Now, let's see how we can find partial derivatives. When we are given a function $f(x, y)$, we calculate the partial derivative of f with respect to x by fixing y and taking the derivative with respect to x. Given the function $f(x, y)=x^{2} y$, find the partial derivatives $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$.
(d) Write out the linear approximation of f near $\left(x_{\star}, y_{\star}\right)$.
(e) We want to see if the approximation arising from linearization of this function is reasonable for a point close to our point of evaluation. Suppose we want to evaluate the accuracy of our approximation at some point $\left(x_{\star}+\delta, y_{\star}+\delta\right)$, where $x_{\star}=2$ and $y_{\star}=3$. Find the accuracy of this approximation in terms of δ. What if $\delta=0.01$?
(f) Suppose we have now a scalar-valued function $f(\vec{x}, \vec{y})$, which takes in vector-valued arguments $\vec{x} \in \mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{k}$ and outputs a scalar $\in \mathbb{R}$. That is, $f(\vec{x}, \vec{y})$ is $\mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$.
One way to linearize the function f is to do it for every single element in $\vec{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{\top}$ and $\vec{y}=\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{k}\end{array}\right]^{\top}$. Then, when we are looking at x_{i} or y_{j}, we fix everything else as constant. This would give us the linear approximation

$$
\begin{equation*}
f(\vec{x}, \vec{y}) \approx f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\left.\sum_{i=1}^{n} \frac{\partial f(\vec{x}, \vec{y})}{\partial x_{i}}\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\left(x_{i}-x_{i, \star}\right)+\left.\sum_{j=1}^{k} \frac{\partial f(\vec{x}, \vec{y})}{\partial y_{j}}\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\left(y_{j}-y_{j, \star}\right) . \tag{3}
\end{equation*}
$$

In order to simplify this equation, we can define the following two vector quantities:

$$
\begin{align*}
& J_{\vec{x}} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right] \tag{4}\\
& J_{\vec{y} f} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial y_{1}} & \cdots & \frac{\partial f}{\partial y_{k}}
\end{array}\right] \tag{5}
\end{align*}
$$

First, how can we "vectorize" eq. (3) using $J_{\vec{x}} f$ and $J_{\vec{y}} f$? Next, assume that $n=k$ and we define the function $f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{k} x_{i} y_{i}$. Find $J_{\vec{x}} f$ and $J_{\vec{y}} f$ for this specific f.
(HINT: For vectorizing, think about replacing the summations as the multiplication of a row and column vector. What would these vectors be?)
(g) Following the above part, find the linear approximation of $f(\vec{x}, \vec{y})$ near $\vec{x}_{\star}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{y}_{\star}=$ $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. Recall that $f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{k} x_{i} y_{i}$.

These linearizations are important for us because we can do many easy computations using linear functions.

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Kuan-Yun Lee.

