The following note is useful for this discussion: Note 18.

1. Linear Approximation

A common way to approximate a nonlinear function is to perform linearization near a point. In the case of a one-dimensional function $f(x)$, the linear approximation of $f(x)$ at a point x_{\star} is given by

$$
\begin{equation*}
\widehat{f}\left(x ; x_{\star}\right)=f\left(x_{\star}\right)+f^{\prime}\left(x_{\star}\right) \cdot\left(x-x_{\star}\right) \tag{1}
\end{equation*}
$$

where $f^{\prime}\left(x_{\star}\right):=\frac{\mathrm{d} f}{\mathrm{~d} x}\left(x_{\star}\right)$ is the derivative of $f(x)$ at $x=x_{\star}$.
Keep in mind that wherever we see x_{\star}, this denotes a constant value or operating point.
We can evaluate the accuracy of our approximation by calculating the approximation error, namely $\left|f(x)-\widehat{f}\left(x ; x_{\star}\right)\right|$.
Suppose we have the single-variable function $f(x)=x^{3}-3 x^{2}$. We can plot the function $f(x)$ as follows:

Figure 1: Plot of $f(x)=x^{3}-3 x^{2}$
(a) Write the linear approximation of the function around an arbitrary point x_{\star}. Solution:

$$
\begin{align*}
\widehat{f}\left(x ; x_{\star}\right) & =f\left(x_{\star}\right)+f^{\prime}\left(x_{\star}\right) \cdot\left(x-x_{\star}\right) \tag{2}\\
& =f\left(x_{\star}\right)+\left(3 x_{\star}^{2}-6 x_{\star}\right) \cdot\left(x-x_{\star}\right) \tag{3}
\end{align*}
$$

(b) Using the expression above, linearize the function around the point $x_{\star}=1.5$. Draw the linearization into the plot in fig. 1. Then evaluate the accuracy of the linear approximation at $x=1.7$ and $x=2.5$. Does the difference in accuracy make sense, based on the plot?

Solution:

$$
\begin{align*}
\widehat{f}\left(x ; x_{\star}\right) & =f(1.5)+\left(3 \cdot 1.5^{2}-6 \cdot 1.5\right) \cdot(x-1.5) \tag{4}\\
& =-3.375+(-2.25) \cdot(x-1.5) \tag{5}
\end{align*}
$$

The plot is shown below:

Figure 2: Plot of $\widehat{f}\left(x ; x_{\star}\right)$ and $f(x)$
To evaluate the accuracy of $\widehat{f}\left(x ; x_{\star}\right)$, we can compute $\left|\widehat{f}\left(x ; x_{\star}\right)-f(x)\right|$. At $x=1.7$:

$$
\begin{align*}
\widehat{f}\left(1.7 ; x_{\star}\right) & =-3.375+(-2.25) \cdot(1.7-1.5) \tag{6}\\
& =-3.375-0.45 \tag{7}\\
& =-3.825 \tag{8}
\end{align*}
$$

and $f(1.7)=1.7^{3}-3 \cdot 1.7^{2}=-3.757$. Hence, $\left|\widehat{f}\left(1.7 ; x_{\star}\right)-f(1.7)\right|=0.068$. Now, at $x=2.5$:

$$
\begin{align*}
\widehat{f}\left(2.5 ; x_{\star}\right) & =-3.375+(-2.25) \cdot(2.5-1.5) \tag{9}\\
& =-3.375-2.25 \tag{10}\\
& =-5.625 \tag{11}
\end{align*}
$$

and $f(2.5)=2.5^{3}-3 \cdot 2.5^{2}=-3.125$. Hence, $\left|\widehat{f}\left(2.5 ; x_{\star}\right)-f(2.5)\right|=2.5$. We see that the error at $x=2.5$ is about 3 times higher than the error at $x=1.7$. We can plot the points $x=1.7$ and $x=2.5$ on fig. 2 to explicitly see this difference in errors:

Now, we can extend this to higher dimensional functions. In the case of a two-dimensional function $f(x, y)$, the linear approximation of $f(x, y)$ at a point $\left(x_{\star}, y_{\star}\right)$ is given by

$$
\begin{equation*}
\widehat{f}\left(x, y ; x_{\star}, y_{\star}\right)=f\left(x_{\star}, y_{\star}\right)+\frac{\partial f}{\partial x}\left(x_{\star}, y_{\star}\right) \cdot\left(x-x_{\star}\right)+\frac{\partial f}{\partial y}\left(x_{\star}, y_{\star}\right) \cdot\left(y-y_{\star}\right) \tag{12}
\end{equation*}
$$

where $\frac{\partial f}{\partial x}\left(x_{\star}, y_{\star}\right)$ is the partial derivative of $f(x, y)$ with respect to x at the point $\left(x_{\star}, y_{\star}\right)$, and similarly for $\frac{\partial f}{\partial y}\left(x_{\star}, y_{\star}\right)$
(c) Now, let's see how we can find partial derivatives. When we are given a function $f(x, y)$, we calculate the partial derivative of f with respect to x by fixing y and taking the derivative with respect to x. Given the function $f(x, y)=x^{2} y$, find the partial derivatives $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$.
Solution: We have

$$
\begin{align*}
& \frac{\partial f(x, y)}{\partial x}=2 x y \tag{13}\\
& \frac{\partial f(x, y)}{\partial y}=x^{2} \tag{14}
\end{align*}
$$

(d) Write out the linear approximation of f near $\left(x_{\star}, y_{\star}\right)$.

Solution: Based on the formula in eq. (12), we can write that:

$$
\begin{equation*}
\widehat{f}\left(x, y ; x_{\star}, y_{\star}\right)=f\left(x_{\star}, y_{\star}\right)+2 x_{\star} y_{\star} \cdot\left(x-x_{\star}\right)+x_{\star}^{2} \cdot\left(y-y_{\star}\right) \tag{15}
\end{equation*}
$$

(e) We want to see if the approximation arising from linearization of this function is reasonable for a point close to our point of evaluation. Suppose we want to evaluate the accuracy of our
approximation at some point $\left(x_{\star}+\delta, y_{\star}+\delta\right)$, where $x_{\star}=2$ and $y_{\star}=3$. Find the accuracy of this approximation in terms of δ. What if $\delta=0.01$?
Solution: The true value of $f(2+\delta, 3+\delta)$ is

$$
\begin{equation*}
f(2+\delta, 3+\delta)=(2+\delta)^{2}(3+\delta)=\left(4+4 \delta+\delta^{2}\right)(3+\delta)=12+16 \delta+7 \delta^{2}+\delta^{3} \tag{16}
\end{equation*}
$$

On the other hand, our approximation is

$$
\begin{equation*}
\widehat{f}\left(2+\delta, 3+\delta ; x_{\star}, y_{\star}\right)=f(2,3)+2 \cdot 2 \cdot 3 \cdot \delta+2^{2} \cdot \delta=12+16 \delta \tag{17}
\end{equation*}
$$

So the approximation error is

$$
\begin{equation*}
\left|f(2+\delta, 3+\delta)-\widehat{f}\left(2+\delta, 3+\delta ; x_{\star}, y_{\star}\right)\right|=\left|7 \delta^{2}+\delta^{3}\right| \tag{18}
\end{equation*}
$$

When δ is sufficiently small (i.e. close to 0), the δ^{2} and δ^{3} terms become very small, and hence our approximation is reasonable. For $\delta=0.01$, the approximation error is $\left|7 \delta^{2}+\delta^{3}\right|=0.000701$.
(f) Suppose we have now a scalar-valued function $f(\vec{x}, \vec{y})$, which takes in vector-valued arguments $\vec{x} \in \mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{k}$ and outputs a scalar $\in \mathbb{R}$. That is, $f(\vec{x}, \vec{y})$ is $\mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$.
One way to linearize the function f is to do it for every single element in $\vec{x}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]^{\top}$ and $\vec{y}=\left[\begin{array}{llll}y_{1} & y_{2} & \ldots & y_{k}\end{array}\right]^{\top}$. Then, when we are looking at x_{i} or y_{j}, we fix everything else as constant. This would give us the linear approximation

$$
\begin{equation*}
f(\vec{x}, \vec{y}) \approx f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\left.\sum_{i=1}^{n} \frac{\partial f(\vec{x}, \vec{y})}{\partial x_{i}}\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\left(x_{i}-x_{i, \star}\right)+\left.\sum_{j=1}^{k} \frac{\partial f(\vec{x}, \vec{y})}{\partial y_{j}}\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\left(y_{j}-y_{j, \star}\right) . \tag{19}
\end{equation*}
$$

In order to simplify this equation, we can define the following two vector quantities:

$$
\begin{align*}
& J_{\vec{x}} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right] \tag{20}\\
& J_{\vec{y}} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial y_{1}} & \cdots & \frac{\partial f}{\partial y_{k}}
\end{array}\right] \tag{21}
\end{align*}
$$

First, how can we "vectorize" eq. (19) using $J_{\vec{x}} f$ and $J_{\vec{y}} f$? Next, assume that $n=k$ and we define the function $f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{k} x_{i} y_{i}$. Find $J_{\vec{x}} f$ and $J_{\vec{y}} f$ for this specific f.
(HINT: For vectorizing, think about replacing the summations as the multiplication of a row and column vector. What would these vectors be?)
Solution: To vectorize eq. (19), we can try to replace the summations with a dot product. That is, if we were to multiply the row vector $\left[\left.\left.\frac{\partial f}{\partial x_{1}}\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)} \cdots \quad \frac{\partial f}{\partial x_{n}}\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\right]=\left.J_{\vec{x}} f\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}$ with the column vector $\left[\begin{array}{c}x_{1}-x_{1, \star} \\ \vdots \\ x_{n}-x_{n, \star}\end{array}\right]=\vec{x}-\vec{x}_{\star}$, then we would get the same summation (and similarly for $\left.y_{j}\right)$. Writing this more compactly,

$$
\begin{equation*}
\widehat{f}\left(\vec{x}, \vec{y} ; \vec{x}_{\star}, \vec{y}_{\star}\right)=f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\left.J_{\vec{x}} f\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\left(\vec{x}-\vec{x}_{\star}\right)+\left.J_{\vec{y}} f\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\left(\vec{y}-\vec{y}_{\star}\right) \tag{22}
\end{equation*}
$$

Now, for the specific $f(\vec{x}, \vec{y})$ in this problem, we apply the definition (and write out the given function explicitly as $x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{k} y_{k}$) to obtain:

$$
J_{\vec{x}} f=\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{k} \tag{23}
\end{array}\right]=\vec{y}^{\top}
$$

and

$$
J_{\vec{y}} f=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{k} \tag{24}
\end{array}\right]=\vec{x}^{\top}
$$

(g) Following the above part, find the linear approximation of $f(\vec{x}, \vec{y})$ near $\vec{x}_{\star}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{y}_{\star}=$ $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. Recall that $f(\vec{x}, \vec{y})=\vec{x}^{\top} \vec{y}=\sum_{i=1}^{k} x_{i} y_{i}$.
Solution: From the solution in the previous part, we can write

$$
\begin{align*}
\widehat{f}\left(\vec{x}, \vec{y} ; \vec{x}_{\star}, \vec{y}_{\star}\right) & =f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\left.J_{\vec{x}} f\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\left(\vec{x}-\vec{x}_{\star}\right)+\left.J_{\vec{y}} f\right|_{\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}\left(\vec{y}-\vec{y}_{\star}\right) \tag{25}\\
& =\vec{x}_{\star}^{\top} \vec{y}_{\star}+\vec{y}_{\star}^{\top}\left(\vec{x}-\vec{x}_{\star}\right)+\vec{x}_{\star}^{\top}\left(\vec{y}-\vec{y}_{\star}\right) \tag{26}
\end{align*}
$$

Putting in $\vec{x}_{\star}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{y}_{\star}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$,

$$
\begin{align*}
\widehat{f}\left(\vec{x}, \vec{y} ; \vec{x}_{\star}, \vec{y}_{\star}\right) & =3+\left[\begin{array}{c}
-1 \\
2
\end{array}\right]^{\top} \vec{x}-3+\left[\begin{array}{l}
1 \\
2
\end{array}\right]^{\top} \vec{y}-3 \tag{27}\\
& =\left[\begin{array}{c}
-1 \\
2
\end{array}\right]^{\top} \vec{x}+\left[\begin{array}{l}
1 \\
2
\end{array}\right]^{\top} \vec{y}-3 \tag{28}
\end{align*}
$$

These linearizations are important for us because we can do many easy computations using linear functions.

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Kuan-Yun Lee.

