EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Discussion 14A

The following notes are useful for this discussion: Note 18.

1. Jacobians and Linear Approximation

Recall that for a scalar-valued function f(%,7) : R" x RF — R with vector-valued arguments, we can

linearize the function at (¥, ¥4):
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In order to simplify this equation, we can define the following two vector quantities:
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(a) When the function f(%,7) : R" x Rk — R™ takes in vectors and outputs a vector (rather than a
scalar), we can view each dimension in f independently as a separate function f;, and linearize

each of them as above:
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We can rewrite this in a clean way with the Jacobian of a vector-valued function:
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and similarly
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Then, the linearization becomes
F&7) = f(Ze 70) + Jef (R, Ga) - (F = %) + [f (R, Gs) - (7 — Fo)- @)

25
Let X = lxll and f(¥) = [ 1 51 Find J;f, applying the definition above.
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- 2 2.01
(b) Evaluate the approximation of f using ¥, = l3] at the point [3 011, and compare with
2( 2.01 2 2
f . Recall the definition that f(X) = 2
3.01 x1X3

(c) Let ¥ and i be vectors with 2 rows, and let @ be another vector with 2 rows. Let f(,7) = ¥
Find ],?f and ]yf.

= 1
(d) (PRACTICE) Continuing the above part, find the linear approximation of f near ¥ = jj = L]

2
and with ¥ = L] .
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2. Linearizing a Two-state System

We have a two-state nonlinear system defined by the following differential equation:
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where X(t) = [‘B E ;] and g(+) is a nonlinear function with the following graph:
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The g(-) is the only nonlinearity in this system. We want to linearize this entire system around a
operating point/equilibrium. Any point ¥, is an operating point if f(%,(t), u.(t)) = C.

(a) If we have fixed u,(t) = —1, what values of y and B will ensure %J‘C’(t) = f(Z(1),u(t)) =02

(b) Now that you have the three operating points, linearize the system about the operating point
(%%, uy) (that which has the largest value for 7).  Specifically, what we want is as follows. Let
oxi(t) = B(t) — Xy fori =1,2,3,and du(t) = u(t) — u,. We can in principle write the linearized
system for each operating point in the following form:

d

aéf{(f) = A;6%;(t) + B;ou(t) + w;(t) 9)

(linearization about (X}, 14))

where @;(t) is a disturbance that also includes the approximation error due to linearization.
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For this part, find A3 and Bs.

We have provided below the function g(vy) and its derivative %.
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(c) Which of the operating points are stable? Which are unstable?
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