The following notes are useful for this discussion: Note 18.

1. Jacobians and Linear Approximation

Recall that for a scalar-valued function $f(\vec{x}, \vec{y}): \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ with vector-valued arguments, we can linearize the function at $\left(\vec{x}_{\star}, \vec{y}_{\star}\right)$:

$$
\begin{equation*}
\widehat{f}(\vec{x}, \vec{y})=f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\sum_{i=1}^{n} \frac{\partial f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}{\partial x_{i}}\left(x_{i}-x_{i, \star}\right)+\sum_{j=1}^{k} \frac{\partial f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}{\partial y_{j}}\left(y_{j}-y_{j, \star}\right) \tag{1}
\end{equation*}
$$

In order to simplify this equation, we can define the following two vector quantities:

$$
\begin{align*}
& J_{\vec{x}} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right] \tag{2}\\
& J_{\vec{y}} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial y_{1}} & \cdots & \frac{\partial f}{\partial y_{k}}
\end{array}\right] \tag{3}
\end{align*}
$$

(a) When the function $\vec{f}(\vec{x}, \vec{y}): \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ takes in vectors and outputs a vector (rather than a scalar), we can view each dimension in \vec{f} independently as a separate function f_{i}, and linearize each of them as above:

$$
\hat{\vec{f}}(\vec{x}, \vec{y})=\left[\begin{array}{c}
\hat{f}_{1}(\vec{x}, \vec{y}) \tag{4}\\
\hat{f}_{2}(\vec{x}, \vec{y}) \\
\vdots \\
\hat{f}_{m}(\vec{x}, \vec{y})
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} f_{1} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} f_{1} \cdot\left(\vec{y}-\vec{y}_{\star}\right) \\
f_{2}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} f_{2} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} f_{2} \cdot\left(\vec{y}-\vec{y}_{\star}\right) \\
\vdots \\
f_{m}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} f_{m} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} f_{m} \cdot\left(\vec{y}-\vec{y}_{\star}\right)
\end{array}\right]
$$

We can rewrite this in a clean way with the Jacobian of a vector-valued function:

$$
J_{\vec{x}} \vec{f}=\left[\begin{array}{c}
J_{\vec{x}} f_{1} \tag{5}\\
J_{\vec{x}} f_{2} \\
\vdots \\
J_{\vec{x}} f_{m}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

and similarly

$$
J_{\vec{y}} \vec{f}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}} & \cdots & \frac{\partial f_{1}}{\partial y_{k}} \tag{6}\\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial y_{1}} & \cdots & \frac{\partial f_{m}}{\partial y_{k}}
\end{array}\right]
$$

Then, the linearization becomes

$$
\begin{equation*}
\hat{\vec{f}}(\vec{x}, \vec{y})=\vec{f}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} \vec{f}\left(\vec{x}_{\star}, \vec{y}_{\star}\right) \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} \vec{f}\left(\vec{x}_{\star}, \vec{y}_{\star}\right) \cdot\left(\vec{y}-\vec{y}_{\star}\right) \tag{7}
\end{equation*}
$$

Let $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\vec{f}(\vec{x})=\left[\begin{array}{l}x_{1}^{2} x_{2} \\ x_{1} x_{2}^{2}\end{array}\right]$. Find $J_{\vec{x}} \vec{f}$, applying the definition above.
(b) Evaluate the approximation of \vec{f} using $\vec{x}_{\star}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ at the point $\left[\begin{array}{l}2.01 \\ 3.01\end{array}\right]$, and compare with $\vec{f}\left(\left[\begin{array}{l}2.01 \\ 3.01\end{array}\right]\right)$. Recall the definition that $\vec{f}(\vec{x})=\left[\begin{array}{l}x_{1}^{2} x_{2} \\ x_{1} x_{2}^{2}\end{array}\right]$.
(c) Let \vec{x} and \vec{y} be vectors with 2 rows, and let \vec{w} be another vector with 2 rows. Let $\vec{f}(\vec{x}, \vec{y})=\vec{x} \vec{y}^{\top} \vec{w}$. Find $J_{\vec{x}} \vec{f}$ and $J_{\vec{y}} \vec{f}$.
(d) (PRACTICE) Continuing the above part, find the linear approximation of \vec{f} near $\vec{x}=\vec{y}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and with $\vec{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.

2. Linearizing a Two-state System

We have a two-state nonlinear system defined by the following differential equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
\beta(t) \tag{8}\\
\gamma(t)
\end{array}\right]=\frac{\mathrm{d}}{\mathrm{~d} t} \vec{x}(t)=\left[\begin{array}{l}
-2 \beta(t)+\gamma(t) \\
g(\gamma(t))+u(t)
\end{array}\right]=\vec{f}(\vec{x}(t), u(t))
$$

where $\vec{x}(t)=\left[\begin{array}{l}\beta(t) \\ \gamma(t)\end{array}\right]$ and $g(\cdot)$ is a nonlinear function with the following graph:

The $g(\cdot)$ is the only nonlinearity in this system. We want to linearize this entire system around a operating point/equilibrium. Any point \vec{x}_{\star} is an operating point if $\vec{f}\left(\vec{x}_{\star}(t), u_{\star}(t)\right)=\overrightarrow{0}$.
(a) If we have fixed $u_{\star}(t)=-1$, what values of γ and β will ensure $\frac{d}{d t} \vec{x}(t)=\vec{f}(\vec{x}(t), u(t))=\overrightarrow{0}$?
(b) Now that you have the three operating points, linearize the system about the operating point $\left(\vec{x}_{3}^{\star}, u_{\star}\right)$ (that which has the largest value for γ). Specifically, what we want is as follows. Let $\overrightarrow{\delta x_{i}}(t)=\vec{x}(t)-\vec{x}_{i}^{\star}$ for $i=1,2,3$, and $\delta u(t)=u(t)-u_{\star}$. We can in principle write the linearized system for each operating point in the following form:

$$
\begin{equation*}
\text { (linearization about } \left.\left(\vec{x}_{i}^{\star}, u_{\star}\right)\right) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \delta \vec{x}_{i}(t)=A_{i} \delta \vec{x}_{i}(t)+B_{i} \delta u(t)+\vec{w}_{i}(t) \tag{9}
\end{equation*}
$$

where $\vec{w}_{i}(t)$ is a disturbance that also includes the approximation error due to linearization.

For this part, find A_{3} and B_{3}.
We have provided below the function $g(\gamma)$ and its derivative $\frac{\partial g}{\partial \gamma}$.

(c) Which of the operating points are stable? Which are unstable?

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.
- Alex Devonport.
- Kumar Krishna Agrawal.

