The following notes are useful for this discussion: Note 18.

1. Jacobians and Linear Approximation

Recall that for a scalar-valued function $f(\vec{x}, \vec{y}): \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ with vector-valued arguments, we can linearize the function at $\left(\vec{x}_{\star}, \vec{y}_{\star}\right)$:

$$
\begin{equation*}
\widehat{f}(\vec{x}, \vec{y})=f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+\sum_{i=1}^{n} \frac{\partial f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}{\partial x_{i}}\left(x_{i}-x_{i, \star}\right)+\sum_{j=1}^{k} \frac{\partial f\left(\vec{x}_{\star}, \vec{y}_{\star}\right)}{\partial y_{j}}\left(y_{j}-y_{j, \star}\right) \tag{1}
\end{equation*}
$$

In order to simplify this equation, we can define the following two vector quantities:

$$
\begin{align*}
& J_{\vec{x}} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right] \tag{2}\\
& J_{\vec{y}} f=\left[\begin{array}{lll}
\frac{\partial f}{\partial y_{1}} & \cdots & \frac{\partial f}{\partial y_{k}}
\end{array}\right] \tag{3}
\end{align*}
$$

(a) When the function $\vec{f}(\vec{x}, \vec{y}): \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$ takes in vectors and outputs a vector (rather than a scalar), we can view each dimension in \vec{f} independently as a separate function f_{i}, and linearize each of them as above:

$$
\hat{f}(\vec{x}, \vec{y})=\left[\begin{array}{c}
\hat{f}_{1}(\vec{x}, \vec{y}) \tag{4}\\
\hat{f}_{2}(\vec{x}, \vec{y}) \\
\vdots \\
\hat{f}_{m}(\vec{x}, \vec{y})
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} f_{1} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} f_{1} \cdot\left(\vec{y}-\vec{y}_{\star}\right) \\
f_{2}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} f_{2} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} f_{2} \cdot\left(\vec{y}-\vec{y}_{\star}\right) \\
\vdots \\
f_{m}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} f_{m} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} f_{m} \cdot\left(\vec{y}-\vec{y}_{\star}\right)
\end{array}\right]
$$

We can rewrite this in a clean way with the Jacobian of a vector-valued function:

$$
J_{\vec{x}} \vec{f}=\left[\begin{array}{c}
J_{\vec{x}} f_{1} \tag{5}\\
J_{\vec{x}} f_{2} \\
\vdots \\
J_{\vec{x}} f_{m}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

and similarly

$$
J_{\vec{y}} \vec{f}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}} & \cdots & \frac{\partial f_{1}}{\partial y_{k}} \tag{6}\\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial y_{1}} & \cdots & \frac{\partial f_{m}}{\partial y_{k}}
\end{array}\right]
$$

Then, the linearization becomes

$$
\begin{equation*}
\hat{\vec{f}}(\vec{x}, \vec{y})=\vec{f}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} \vec{f}\left(\vec{x}_{\star}, \vec{y}_{\star}\right) \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} \vec{f}\left(\vec{x}_{\star}, \vec{y}_{\star}\right) \cdot\left(\vec{y}-\vec{y}_{\star}\right) \tag{7}
\end{equation*}
$$

Let $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\vec{f}(\vec{x})=\left[\begin{array}{l}x_{1}^{2} x_{2} \\ x_{1} x_{2}^{2}\end{array}\right]$. Find $J_{\vec{x}} \vec{f}$, applying the definition above.
Solution: Here, we have

$$
J_{\vec{x}} \vec{f}=\left[\begin{array}{cc}
2 x_{1} x_{2} & x_{1}^{2} \tag{8}\\
x_{2}^{2} & 2 x_{1} x_{2}
\end{array}\right] .
$$

(b) Evaluate the approximation of \vec{f} using $\vec{x}_{\star}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ at the point $\left[\begin{array}{l}2.01 \\ 3.01\end{array}\right]$, and compare with $\vec{f}\left(\left[\begin{array}{l}2.01 \\ 3.01\end{array}\right]\right)$. Recall the definition that $\vec{f}(\vec{x})=\left[\begin{array}{l}x_{1}^{2} x_{2} \\ x_{1} x_{2}^{2}\end{array}\right]$.
Solution: Let $\delta=0.01$. The true value is

$$
\vec{f}\left(\left[\begin{array}{l}
2.01 \tag{9}\\
3.01
\end{array}\right]\right)=\left[\begin{array}{l}
(2+\delta)^{2}(3+\delta) \\
(2+\delta)(3+\delta)^{2}
\end{array}\right]=\left[\begin{array}{l}
12+16 \delta+7 \delta^{2}+\delta^{3} \\
18+21 \delta+8 \delta^{2}+\delta^{3}
\end{array}\right]
$$

On the other hand, our approximation is

$$
\vec{f}\left(\left[\begin{array}{l}
2.01 \tag{10}\\
3.01
\end{array}\right]\right) \approx \vec{f}\left(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right)+\left[\begin{array}{cc}
12 & 4 \\
9 & 12
\end{array}\right] \cdot\left[\begin{array}{l}
\delta \\
\delta
\end{array}\right]=\left[\begin{array}{l}
12+16 \delta \\
18+21 \delta
\end{array}\right]
$$

Again, our approximation essentially removes the higher order terms of δ. When we plug in $\delta=0.01$, we have

$$
\vec{f}\left(\left[\begin{array}{l}
2.01 \tag{11}\\
3.01
\end{array}\right]\right)=\left[\begin{array}{l}
12.160701 \\
18.210801
\end{array}\right]
$$

and our approximation is

$$
\vec{f}\left(\left[\begin{array}{l}
2.01 \tag{12}\\
3.01
\end{array}\right]\right)=\left[\begin{array}{l}
12.16 \\
18.21
\end{array}\right]
$$

(c) Let \vec{x} and \vec{y} be vectors with 2 rows, and let \vec{w} be another vector with 2 rows. Let $\vec{f}(\vec{x}, \vec{y})=\vec{x} \vec{y}^{\top} \vec{w}$. Find $J_{\vec{x}} \vec{f}$ and $J_{\vec{y}} \vec{f}$.
Solution: Here, recall that

$$
\vec{f}=\left[\begin{array}{l}
x_{1} \tag{13}\\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} y_{1} & x_{1} y_{2} \\
x_{2} y_{1} & x_{2} y_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} y_{1} w_{1}+x_{1} y_{2} w_{2} \\
x_{2} y_{1} w_{1}+x_{2} y_{2} w_{2}
\end{array}\right]
$$

Then,

$$
J_{\vec{x}} \vec{f}=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \tag{14}\\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
y_{1} w_{1}+y_{2} w_{2} & 0 \\
0 & y_{1} w_{1}+y_{2} w_{2}
\end{array}\right]
$$

and

$$
J_{\vec{y}} \vec{f}=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \tag{15}\\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} w_{1} & x_{1} w_{2} \\
x_{2} w_{1} & x_{2} w_{2}
\end{array}\right]
$$

We can also write

$$
\begin{equation*}
J_{\vec{x}} \vec{f}=\vec{y}^{\top} \vec{w} \cdot I \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{\vec{y}} \vec{f}=\vec{x} \vec{w}^{\top} \tag{17}
\end{equation*}
$$

which can be derived by noticing that $\vec{y}^{\top} \vec{w}=\vec{w}^{\top} \vec{y}$.
(d) (PRACTICE) Continuing the above part, find the linear approximation of \vec{f} near $\vec{x}=\vec{y}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and with $\vec{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
Solution: We have

$$
\begin{align*}
\vec{f}(\vec{x}, \vec{y}) & \approx \vec{f}\left(\vec{x}_{\star}, \vec{y}_{\star}\right)+J_{\vec{x}} \vec{f} \cdot\left(\vec{x}-\vec{x}_{\star}\right)+J_{\vec{y}} \vec{f} \cdot\left(\vec{y}-\vec{y}_{\star}\right) \tag{18}\\
& =\left[\begin{array}{l}
3 \\
3
\end{array}\right]+\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}-1 \\
x_{2}-1
\end{array}\right]+\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1}-1 \\
y_{2}-1
\end{array}\right] \tag{19}
\end{align*}
$$

Let's do an approximation of $\vec{f}\left(\left[\begin{array}{l}1+\delta_{1} \\ 1+\delta_{2}\end{array}\right],\left[\begin{array}{l}1+\delta_{3} \\ 1+\delta_{4}\end{array}\right]\right)$, then,

$$
\vec{f}\left(\left[\begin{array}{l}
1+\delta_{1} \tag{20}\\
1+\delta_{2}
\end{array}\right],\left[\begin{array}{l}
1+\delta_{3} \\
1+\delta_{4}
\end{array}\right]\right) \approx\left[\begin{array}{l}
3 \\
3
\end{array}\right]+\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \cdot\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right]+\left[\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
\delta_{3} \\
\delta_{4}
\end{array}\right]=\left[\begin{array}{l}
3+3 \delta_{1}+2 \delta_{3}+\delta_{4} \\
3+3 \delta_{2}+2 \delta_{3}+\delta_{4}
\end{array}\right]
$$

We can compare with the true value

$$
\begin{align*}
\vec{f}\left(\left[\begin{array}{l}
1+\delta_{1} \\
1+\delta_{2}
\end{array}\right],\left[\begin{array}{l}
1+\delta_{3} \\
1+\delta_{4}
\end{array}\right]\right) & =\left[\begin{array}{l}
1+\delta_{1} \\
1+\delta_{2}
\end{array}\right]\left[\begin{array}{ll}
1+\delta_{3} & 1+\delta_{4}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
1+\delta_{1} \\
1+\delta_{2}
\end{array}\right]\left(3+2 \delta_{3}+\delta_{4}\right) \tag{21}\\
& =\left[\begin{array}{l}
3+3 \delta_{1}+2 \delta_{3}+\delta_{4}+2 \delta_{1} \delta_{3}+\delta_{1} \delta_{4} \\
3+3 \delta_{2}+2 \delta_{3}+\delta_{4}+2 \delta_{2} \delta_{3}+\delta_{2} \delta_{4}
\end{array}\right]
\end{align*}
$$

and we see that our approximation removes the second order δ terms $\delta_{1} \delta_{3}, \delta_{1} \delta_{4}, \delta_{2} \delta_{3}$ and $\delta_{2} \delta_{4}$.

2. Linearizing a Two-state System

We have a two-state nonlinear system defined by the following differential equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
\beta(t) \tag{22}\\
\gamma(t)
\end{array}\right]=\frac{\mathrm{d}}{\mathrm{~d} t} \vec{x}(t)=\left[\begin{array}{l}
-2 \beta(t)+\gamma(t) \\
g(\gamma(t))+u(t)
\end{array}\right]=\vec{f}(\vec{x}(t), u(t))
$$

where $\vec{x}(t)=\left[\begin{array}{l}\beta(t) \\ \gamma(t)\end{array}\right]$ and $g(\cdot)$ is a nonlinear function with the following graph:

The $g(\cdot)$ is the only nonlinearity in this system. We want to linearize this entire system around a operating point/equilibrium. Any point \vec{x}_{\star} is an operating point if $\vec{f}\left(\vec{x}_{\star}(t), u_{\star}(t)\right)=\overrightarrow{0}$.
(a) If we have fixed $u_{\star}(t)=-1$, what values of γ and β will ensure $\frac{\mathrm{d}}{\mathrm{d} t} \vec{x}(t)=\vec{f}(\vec{x}(t), u(t))=\overrightarrow{0}$?

Solution: To find the equilibrium point, we'll start by finding the values for which $g(\gamma)+u^{\star}=$ $g(\gamma)-1=0$. In other words, we need to find values of γ such that $g(\gamma)=1$. Although we don't have an equation for $g(\gamma)$, we can still find these points graphically, by using our graph. If we add a horizonal line at $g(\gamma)=1$, we get the following:

Having done this, it looks like we'll have $f_{2}\left(\vec{x}, u^{\star}\right)=g(\gamma)-u^{\star}=0$ for $\gamma=-2, \gamma=-1$, and $\gamma=1$.
Now we just need to find an β that sets $f_{1}\left(\vec{x}, u^{\star}\right)=-2 \beta+\gamma=0$ for each of these. Setting $\beta=\frac{1}{2} \cdot \gamma$ will do this.
With that, we have our three equilibrium points, namely

$$
\vec{x}_{1}^{\star}=\left[\begin{array}{l}
-1 \tag{23}\\
-2
\end{array}\right] \quad \vec{x}_{2}^{\star}=\left[\begin{array}{c}
-\frac{1}{2} \\
-1
\end{array}\right] \quad \vec{x}_{3}^{\star}=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

(b) Now that you have the three operating points, linearize the system about the operating point $\left(\vec{x}_{3}^{\star}, u_{\star}\right)$ (that which has the largest value for γ). Specifically, what we want is as follows. Let $\overrightarrow{\delta x_{i}}(t)=\vec{x}(t)-\vec{x}_{i}^{\star}$ for $i=1,2,3$, and $\delta u(t)=u(t)-u_{\star}$. We can in principle write the linearized system for each operating point in the following form:

$$
\begin{equation*}
\text { (linearization about } \left.\left(\vec{x}_{i}^{\star}, u_{\star}\right)\right) \quad \frac{\mathrm{d}}{\mathrm{~d} t} \delta \vec{x}_{i}(t)=A_{i} \delta \vec{x}_{i}(t)+B_{i} \delta u(t)+\vec{w}_{i}(t) \tag{24}
\end{equation*}
$$

where $\vec{w}_{i}(t)$ is a disturbance that also includes the approximation error due to linearization. For this part, find A_{3} and B_{3}.
We have provided below the function $g(\gamma)$ and its derivative $\frac{\partial g}{\partial \gamma}$.

Solution: To linearize the system, we need to compute the two Jacobians

$$
\begin{align*}
& J_{\vec{x}}=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial \beta} & \frac{\partial f_{1}}{\partial \gamma} \\
\frac{\partial f_{2}}{\partial \beta} & \frac{\partial f_{2}}{\partial \gamma}
\end{array}\right] \tag{25}\\
& J_{u}=\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial u} \\
\frac{\partial f_{2}}{\partial u}
\end{array}\right] \tag{26}
\end{align*}
$$

and evaluate them at the operating points that we found in the previous part. The Jacobian matrices evaluated at the operating points will be the A_{i} and B_{i} matrices.
If we work out the partial derivatives, we get

$$
\begin{align*}
& \frac{\partial f_{1}}{\partial \beta}=\frac{\partial}{\partial \beta}(-2 \beta+\gamma)=-2 \tag{27}\\
& \frac{\partial f_{1}}{\partial \gamma}=\frac{\partial}{\partial \gamma}(-2 \beta+\gamma)=1 \tag{28}\\
& \frac{\partial f_{2}}{\partial \beta}=\frac{\partial}{\partial \beta}(g(\gamma)+u)=0 \tag{29}\\
& \frac{\partial f_{2}}{\partial \gamma}=\frac{\partial}{\partial \gamma}(g(\gamma)+u)=\frac{\partial g}{\partial \gamma} \tag{30}\\
& \frac{\partial f_{1}}{\partial u}=\frac{\partial}{\partial u}(-2 \beta+\gamma)=0 \tag{31}\\
& \frac{\partial f_{2}}{\partial u}=\frac{\partial}{\partial u}(g(\gamma)+u)=1 \tag{32}
\end{align*}
$$

which gives

$$
\begin{align*}
& J_{\vec{x}}=\left[\begin{array}{cc}
-2 & 1 \\
0 & \frac{\partial g}{\partial \gamma}
\end{array}\right] \tag{33}\\
& J_{u}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \tag{34}
\end{align*}
$$

It turns out that the only part of $J_{\vec{x}}$ and J_{u} that depends on the operating point is $\partial g / \partial \gamma$, and we can read these off of the given graph. The relevant values are

$$
\begin{equation*}
\left.\frac{\partial g}{\partial \gamma}\right|_{\gamma=-2}=1.5 \tag{35}
\end{equation*}
$$

$$
\begin{gather*}
\left.\frac{\partial g}{\partial \gamma}\right|_{\gamma=-1}=-1 \tag{36}\\
\left.\frac{\partial g}{\partial \gamma}\right|_{\gamma=1}=3 \tag{37}
\end{gather*}
$$

which correspond to $\vec{x}_{1}^{\star}, \vec{x}_{2}^{\star}$, and \vec{x}_{3}^{\star}, respectively. Finally, this gives

$$
\begin{array}{rlr}
A_{1}=\left[\begin{array}{cc}
-2 & 1 \\
0 & 1.5
\end{array}\right], & B_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
A_{2}=\left[\begin{array}{cc}
-2 & 1 \\
0 & -1
\end{array}\right], & B_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
A_{3}=\left[\begin{array}{cc}
-2 & 1 \\
0 & 3
\end{array}\right], & B_{3}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] . \tag{40}
\end{array}
$$

(c) Which of the operating points are stable? Which are unstable?

Solution: To assess the stability or instability of each operating point, we need to find the eigenvalues of each linearization. Since A_{1}, A_{2}, and A_{3} are all upper triangular, their eigenvalues are just the two entries along their diagonals. So, the linearization will be stable if both diagonal entries are negative (remember, these are continuous-time systems), and unstable if they aren't both negative. This means that:

- \vec{x}_{1}^{\star} is unstable, since the eigenvalues of A_{1} are -2 and 1.5;
- \vec{x}_{2}^{\star} is stable, since the eigenvalues of A_{2} are -2 and -1 ;
- \vec{x}_{3}^{*} is unstable, since the eigenvalues of A_{3} are -2 and 3 .

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.
- Alex Devonport.
- Kumar Krishna Agrawal.

