
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Discussion 14B

The following note is useful for this discussion: Note 18.

1. Using a Nonlinear NMOS Transistor for Amplification

Consider the following schematic where VDD = 1.5 V, RL = 400 Ω and the NMOS transistor has
threshold voltage Vth = 0.2 V. We are interested in analyzing the response of this circuit to input
voltages of the form Vin(t) = Vin,DC + vin,AC(t), where Vin,DC is some constant voltage and vin,AC(t) =
0.001 cos(ωt)V is a sinusoidal signal whose magnitude is much smaller than Vin,DC.

The I-V relationship of an NMOS can be modeled as non-linear functions over different regions of
operation. For simplicity, let’s just focus on the case when 0 ≤ VGS − Vth < VDS. In this regime of
interest, the relevant I-V relationship is given by

IDS(VGS) =
K
2
(VGS − Vth)

2 (1)

where K is a constant that depends on the NMOS transistor size and properties.
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(b) Vout vs Vin in the regime of interest. Tangent is drawn at
the operating point Vin,DC = 0.6 V, Vout,DC = 0.7 V

Figure 1: NMOS figures.

From Ohm’s law and KCL, we know that

Vout(t) = VDD − RL IDS(t). (2)

Note from Figure 1a that Vin = VGS and Vout = VDS. In Figure 1b, we can see the curve of Vout vs Vin

in the transistor operating regime of interest.

(a) Using eq. (1) and eq. (2), express Vout(t) as a function of Vin(t) symbolically. (You can use
VDD, RL, Vin, K, Vth in your answer.)
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(b) We can decompose the input into constant (i.e., DC) and time-varying (i.e., AC) components to
obtain Vin(t) = Vin,DC + vin,AC(t). Linearize Vout(t) as a function of Vin(t) about Vin = Vin,DC.
What is the slope of the linearized function?

(c) Next, we can also decompose the output Vout into DC and AC components to obtain Vout =

Vout,DC + vout,AC(t). What is Vout,DC from the linearized representation in part 1.b? Simplify
the linear approximation to be in terms of vout,AC(t) and vin,AC(t), for very small vin,AC(t).

(d) For very small vin,AC(t), what circuit element can we use to represent the I-V relation between
vout,AC(t) and ∆IDS := gmvin,AC(t)? Draw this circuit element.
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2. Feedback Control and Linearization

Consider the problem of balancing a pole on a cart as follows:

l

m

M

θ

F

x

The mass of the cart itself is M, the length of the rod is l, and the mass of the rod is m. The angle
θ is measured with respect to the vertical as shown above, and x is the horizontal translation of the
cart (i.e., along the x-axis). The force F is the control input to the system. Assume that all of the mass
on the rod is concentrated at the very end of the rod. Further assume that there is no friction. The
following differential equations are derived from the physics describing the cart-pole system:

d2x(t)
dt2 =

1
M + m sin2(θ)

(
F + m sin(θ)

(
l
(

dθ

dt

)2
− g cos(θ)

))
(3)

d2θ(t)
dt2 =

1
l(M + m sin2(θ))

(
−F cos(θ)− ml

(
dθ

dt

)2
cos(θ) sin(θ) + (M + m)g sin(θ)

)
(4)

Deriving these equations is out of scope. The task is as follows: we would like the pole to remain
upright and the cart to be at the origin (i.e., x = 0). The cart and pole must also be stationary.
In this problem, we will use Jacobian linearization and state feedback to derive a controller that can
achieve this goal for us.

(a) Show that an appropriate state space would be ~x(t) =


x

dx
dt
θ
dθ
dt

. Find an appropriate control

input u(t), and then find ~f (~x, u) such that d
dt~x = ~f (~x, u). Assume m = M = l = 1.
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(b) What point ~x? and u? do we want to linearize around?

(HINT: Think about what we want the cart-pole system to do. What state do we want the system to
converge to?)

(c) Write ~x(t) =


x1(t)
x2(t)
x3(t)
x4(t)

. Find the Jacobian of ~f (~x, u). That is, find J~x~f and Ju~f . You may leave

your answer in terms of the components of ~x, ∂ f2
∂x3

, and ∂ f4
∂x3

.

(d) Linearize the dynamics about the ~x? that you found earlier. Explicitly write this linearized
system. You may use the fact that ∂ f2

∂x3
(~x?, u?) = −g and ∂ f4

∂x3
(~x?, u?) = 2g. Is the linearized sys-

tem stable? How can we accomplish the task mentioned at the beginning of the problem?
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The accompanying Colab notebook shows a demo of how we may want to accomplish the goal
of stabilizing the cart-pole system.

Contributors:
• Anish Muthali.
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• Moses Won.
• Ayan Biswas.
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