
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Homework 7

This homework is due on Friday, October 14, 2022, at 11:59PM. Self-
grades and HW re-submissions are due on the following Friday, October
21, 2022, at 11:59PM.

1. Existence and uniqueness of solutions to differential equations

When doing circuits or systems analysis, we sometimes model our system via a differential equation,
and would often like to solve it to get the system trajectory. To this end, we would like to verify that a
solution to our differential equation exists and is unique, so that our model is physically meaningful.
There is a general approach to doing this, which is demonstrated in this problem.

We would like to show that there is a unique function x : R→ R which satisfies

d
dt

x(t) = αx(t) (1)

x(0) = x0. (2)

In order to do this, we will first verify that a solution xd exists. To show that xd is the unique solution,
we will take an arbitrary solution y and show that xd(t) = y(t) for every t.

(a) First, let us show that a solution to our differential equation exists. Verify that xd(t) := x0eαt

satisfies eq. (1) and eq. (2).

(b) Now, let us show that our solution is unique. As mentioned before, suppose y : R → R also
satisfies eq. (1) and eq. (2).

We want to show that y(t) = xd(t) for all t. Our strategy is to show that y(t)
xd(t)

= 1 for all t.

However, this particular differential equation poses a problem: if x0 = 0, then xd(t) = 0 for all t,
so that the quotient is not well-defined. To patch this method, we would like to avoid using any
function with x0 in the denominator. One way we can do this is consider a modification of the
quotient y(t)

xd(t)
= y(t)

x0eαt ; in particular, we consider the function z(t) := y(t)
eαt .

Show that z(t) = x0 for all t, and explain why this means that y(t) = xd(t) for all t.

(HINT: Show first that z(0) = x0 and then that d
dt z(t) = 0. Argue that these two facts imply that

z(t) = x0 for all t. Then show that this implies y(t) = xd(t) for all t.)

(HINT: Remember that we said y is any solution to eq. (1) and eq. (2), so we only know these properties of
y. If you need something about y to be true, see if you can show it from eq. (1) and eq. (2).)

(HINT: When taking d
dt z(t), remember to use the quotient rule, along with what we know about y.)
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2. Simple Scalar Differential Equations Driven by an Input

In this question, we will show the existence and uniqueness of solutions to differential equations with
inputs. In particular, we consider the scalar differential equation

d
dt

x(t) = λx(t) + bu(t) (3)

x(0) = x0 (4)

where u : R → R is a known function of time. Feel free to assume u is "nice" in the sense that it is
integrable, continuous, and differentiable with bounded derivative – basically, let u be nice enough
that all the usual calculus theorems work.

(a) We will first demonstrate the existence of a solution to eqs. (3) and (4).

Define xd : R→ R by

xd(t) := eλtx0 +
∫ t

0
eλ(t−τ)bu(τ)dτ (5)

Show that xd satisfies eqs. (3) and (4).

(HINT: When showing that xd satisfies eq. (3), one possible approach to calculate the derivative of the
integral term is to use the fundamental theorem of calculus and the product rule.)

(b) Now, we will show that xd is the unique solution to eqs. (3) and (4).

Suppose that y : R→ R also satisfies eqs. (3) and (4). Show that y(t) = xd(t) for all t.

(HINT: This time, show that z(t) := y(t)− xd(t) = 0 for all t. Do this by showing that z(0) = 0 and
d
dt z(t) = λz(t), then use the uniqueness theorem for homogeneous first-order linear differential equations
from the last problem. Note that the specific form of xd(t) in eq. (5) is irrelevant for the solution and should
not be used.)

(c) Extend the solution in eq. (5) to the diagonal, vector differential equation case. Namely, show
that the solution for

d
dt
~x(t) = Λ~x(t) +~bu(t) (6)

is given by

~x(t) = eΛt~x(0) +
∫ t

0
eΛ(t−τ)~bu(τ)dτ (7)

where ~x(t) : R→ Rn, Λ ∈ Rn×n is a diagonal matrix,~b ∈ Rn, and u(t) : R→ R. For notational

convenience, we define eΛx =


eλ1x

eλ2x

. . .

eλnx

 where Λ :=


λ1

λ2
. . .

λn

.

(HINT: You may use the fact that, if~z(t) : R→ Rn and~z(t) :=


z1(t)
z2(t)

...
zn(t)

, it is the case that
∫ b

a ~z(t)dt =


∫ b

a z1(t)dt∫ b
a z2(t)dt

...∫ b
a zn(t)dt

.)
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(HINT: Consider breaking down the diagonal vector differential equation case into n different scalar cases.
How can you combine the results from eq. (5) with this?)

(d) Extend the result from the previous part for an arbitrary vector differenial equation given by

d
dt
~x(t) = A~x(t) +~bu(t) (8)

where A is a diagonalizable matrix (but not necessarily a diagonal matrix). You may assume
that A can be diagonalized as A = VΛV−1. For notational convenience, you may want to define
~̃b = V−1~b.
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3. Eigenvectors and Diagonalization

(a) Let A be an n × n matrix with n linearly independent eigenvectors ~v1, ~v2, . . . , ~vn, and corre-
sponding eigenvalues λ1, λ2, . . . , λn. Define V to be a matrix with ~v1, ~v2, . . . , ~vn as its columns,
V =

[
~v1 ~v2 · · · ~vn

]
.

Show that AV = VΛ, where Λ = diag(λ1, λ2, . . . , λn), a diagonal matrix with the eigenvalues
of A as its diagonal entries.

(b) Argue that V is invertible, and therefore

A = VΛV−1. (9)

(HINT: What condition on a matrix’s columns means that it would be invertible? It is fine to cite the
appropriate result from 16A.)

(c) Write Λ in terms of the matrices A, V, and V−1.

(d) A matrix A is deemed diagonalizable if there exists a square matrix U so that A can be written
in the form A = UDU−1 for the choice of an appropriate diagonal matrix D.

Show that the columns of U must be eigenvectors of the matrix A, and that the entries of D
must be eigenvalues of A.

(HINT: Recall the definition of an eigenvector (i.e., A~v = λ~v). Then, recall what U−1U is. Lastly,
consider how matrix multiplication works column-wise.)

The previous part shows that the only way to diagonalize A is using its eigenvalues/eigenvectors.
Now we will explore a payoff for diagonalizing A – an operation that diagonalization makes much
simpler.
(e) For a matrix A and a positive integer k, we define the exponent to be

Ak = A · A · · · · · A · A︸ ︷︷ ︸
k times

(10)

Let’s assume that matrix A is diagonalizable with eigenvalues λ1, λ2, . . . , λn, and corresponding
eigenvectors ~v1, ~v2, . . . , ~vn (i.e. the n eigenvectors are all linearly independent).

Show that Ak has eigenvalues λk
1, λk

2, . . . , λk
n and eigenvectors ~v1, ~v2, . . . , ~vn. Conclude that Ak

is diagonalizable.
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4. Vector Differential Equations

Note: it’s recommended to finish the previous question (Eigenvectors and Diagonalization) before
this problem.

Consider a system of ordinary differential equations that can be written in the form

d
dt
~x(t) :=

[
d
dt x1(t)
d
dt x2(t)

]
= A

[
x1(t)
x2(t)

]
= A~x(t) (11)

where x1, x2 : R → R are scalar functions of time t, and A ∈ R2×2 is a 2× 2 matrix with constant
coefficients. We call eq. (11) a vector differential equation.

(a) It turns out that we can actually turn all higher-order differential equations with constant coeffi-
cients into vector differential equations of the style of eq. (11).

Consider a second-order ordinary differential equation

d2y(t)
dt2 + a

dy(t)
dt

+ by(t) = 0, (12)

where a, b ∈ R.

Write this differential equation in the form of (eq. (11)), by choosing appropriate variables
x1(t) and x2(t).

(HINT: Your original unknown function y(t) has to be one of those variables. The heart of the question is
to figure out what additional variable can you use so that you can express eq. (14) without having to take
a second derivative, and instead just taking the first derivative of something.)

(b) It turns out that all two-dimensional vector linear differential equations with distinct eigenvalues
have a solution in the general form[

x1(t)
x2(t)

]
=

[
c0eλ1t + c1eλ2t

c2eλ1t + c3eλ2t

]
(13)

where c0, c1, c2, c3 are constants, and λ1, λ2 are the eigenvalues of A (this can be proven by just
repeating the same steps in the previous parts and using the fact that distinct eigenvalues implies
linearly independent eigenvectors). Thus, an alternate way of solving this type of differential
equation in the future is to now use your knowledge that the solution is of this form and just
solve for the constants ci.

Now let a = −1 and b = −2 in eq. (12), i.e.

d2y(t)
dt2 − dy(t)

dt
− 2y(t) = 0, (14)

Solve eq. (14) with the initial conditions y(0) = 1, dy
dt (0) = 1, using the general form in eq. (13).

(HINT: You get two equations using the initial conditions above. How many unknowns are here?) (HINT:
Given your specific choice of x1 and x2 in part (f), how many unknowns are there really?)
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5. System Identification

You are given a discrete-time system as a black box. You don’t know the specifics of the system but
you know that it takes one scalar input and has two states that you can observe. You assume that the
system is linear and of the form

~x[i + 1] = A~x[i] + Bu[i] + ~w[i], (15)

where ~w[i] is an external small unknown disturbance, u[i] is a scalar input, and

A =

[
a1 a2

a3 a4

]
, B =

[
b1

b2

]
, x[i] =

[
x1[i]
x2[i]

]
. (16)

You want to identify the system parameters (a1, a2, a3, a4, b1 and b2) from measured data. However,
you can only interact with the system via a black box model, i.e., you can see the states ~x[t] and set
the inputs u[i] that allow the system to move to the next state.

(a) You observe that the system has state ~x[i] =
[

x1[i] x2[i]
]>

at time i. You pass input u[i] into the

black box and observe the next state of the system: ~x[i + 1] =
[

x1[i + 1] x2[i + 1]
]>

.

Write scalar equations for the new states, x1[i + 1] and x2[i + 1]. Write these equations in terms
of the ai, bi, the states x1[i], x2[i] and the input u[i]. Here, assume that ~w[i] =~0 (i.e., the model is
perfect).

(b) Now we want to identify the system parameters. We observe the system at the start state ~x[0] =[
x1[0]
x2[0]

]
. We can then input u[0] and observe the next state ~x[1] =

[
x1[1]
x2[1]

]
. We can continue this

for a sequence of ` inputs.

Let us define an `-length trajectory to be an initial condition~x[0], an input sequence u[0], . . . , u[`−
1], and the corresponding states that are produced by the system x[1], . . . , x[`]. Assuming that
the model is perfect (~w[i] =~0), what is the minimum value of ` you need to identify the system
parameters?

(c) We now remove our assumption that ~w = 0. We assume it is small, so the model is approximately
correct and we have

~x[i + 1] ≈ A~x[i] + Bu[i]. (17)

Say we feed in a total of 4 inputs u[0], . . . , u[3], and observe the states ~x[0], . . . ,~x[4]. To identify
the system we need to set up an approximate (because of potential, small, disturbances) matrix
equation

DP ≈ S (18)

using the observed values above and the unknown parameters we want to find. Let our param-
eter vector be

P :=
[
~p1 ~p2

]
=

a1 a3

a2 a4

b1 b2

 (19)

Find the corresponding D and S to do system identification. Write both out explicitly.
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(d) Now that we have set up DP ≈ S, we can estimate a0, a1, a2, a3, b0, and b1. Give an expression
for the estimates of ~p1 and ~p2 (which are denoted ~̂p1 and ~̂p2 respectively) in terms of D and S.
Denote the columns of S as~s1 and~s2, so we have S = [~s1 ~s2]. Assume that the columns of D are
linearly independent. (HINT: Don’t forget that D is not a square matrix. It is taller than it is wide.)
(HINT: Can we split DP = S into separate equations for p1 and p2?)

Contributors:
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